Refine Your Search

Topic

Search Results

Technical Paper

Current Status of the ESA FTIR-Based Multi-Component Monitoring System for Spacecraft Air Analysis

2000-07-10
2000-01-2302
This paper presents the status of ongoing BB studies for an optimized trace gas monitoring (TGM) system configured to simultaneously and quasi-online detect (quantitatively and qualitatively) 30 different trace gases in manned spacecraft. The system principle relies on the detection of molecule absorption lines in the infrared being converted into a measured spectrum by a Fourier Transform Infrared (FTIR) Spectrometer.
Technical Paper

Thermal Control Architecture of the Automated Transfer Vehicle

1998-07-13
981778
The ATV consists of a Spacecraft and an Integrated Cargo Carrier. The Spacecraft includes all subsystems necessary for the automated flight to the ISS and for the reboost, including the propellant tanks and the thrusters. ...A portion of this MDPS on the Spacecraft is used as radiator by the ATV Thermal Control to reject to space the waste heat generated by the ATV avionics.
Technical Paper

Integrated CO2, Humidity and Thermal Control by Membrane Gas Absorption

2000-07-10
2000-01-2353
Membrane gas absorption for the control of CO2 in manned spacecrafts is studied by Stork and TNO. Membrane Gas Absorption (MGA) is based on the combination of membrane separation and gas absorption. ...The cabin air of a spacecraft is fed along one side of a hydrophobic membrane. The air diffuses through the membrane and the CO2 is selectively absorbed by an absorption liquid.
Technical Paper

Thermal Control System of the Automated Transfer Vehicle

2000-07-10
2000-01-2307
The ATV is composed of the so-called Spacecraft (SC) and an Integrated Cargo Carrier (ICC). The Spacecraft includes the propulsion, reboost and attitude control systems, the avionics and the solar generator system.
Technical Paper

Results of Breadboard Tests Withan Integrated CO2, Humidity and Thermal Control System

2003-07-07
2003-01-2348
Membrane gas absorption and desorption (MGA/MGD) for the removal of CO2 in manned spacecraft or other enclosed environment is subject of study by Stork and TNO for many years. The system is based on the combination of membrane separation and gas absorption. ...The absorption liquid circulates through the spacecraft thermal control loop, replacing the coolant water. The CO2 absorption capacity of the absorption liquid is restored in a desorption unit.
Journal Article

Evaluation of ANITA Air Monitoring on the International Space Station

2009-07-12
2009-01-2520
The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics, with high time resolution, in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarises the results of ANITA's air analyses and compares results to other measurements acquired on ISS during the operational period.
Technical Paper

Integrated CO2 and Humidity Control by Membrane Gas Absorption

1997-07-14
972560
In a harmonized ESA/NIVR project the performance of membrane gas absorption for the simultaneous removal of carbon dioxide and moisture has been determined experimentally at carbon dioxide and humidity concentration levels representative for spacecraft conditions. Performance data at several experimental conditions have been collected.
Technical Paper

On Orbit Life Extension of the Minus Eighty Freezer MELFI Inside the Station Utilization

2007-07-09
2007-01-3029
Because of the reduction on the remaining Shuttle launches, the initial mission that was assigned for MELFI, the Minus Eighty degrees Celsius Laboratory Freezer for ISS, has been significantly modified. While the design was made for a MELFI flying 15 times over a period of 10 years with individual missions no longer than 2 years, present scenario requires to have MELFI in orbit up to 7 years. Extending the MELFI on orbit life from two to seven years has required staggered assessments, each of them aiming at preserving as much as possible the existing design. The potential life limited items are evaluated. On orbit maintenance will be extended for a longer period and maintenance activities foreseen initially to be done on ground between flights will be adapted for orbit. Degraded modes are evaluated so that MELFI ensures its mission at the end of the life even with some off-nominal conditions.
Technical Paper

Space Plant Research on the ISS with the European Modular Cultivation System and with BIOLAB

2000-07-10
2000-01-2472
Two ESA facilities will be available for plant research and other biological experiments on the International Space Station: the European Modular Cultivation System (EMCS) in the US “Destiny” Module and BIOLAB in the European “Columbus” Laboratory. Both facilities use standard experiment containers, mounted on centrifuges and connected to life support systems, allowing telescience-controlled acceleration studies (0.001×g up to 2.0×g) and continuation of microgravity research on protoplasts, callus cultures, algae, fungi and seedlings, as earlier flown on Biorack, and new experiments with larger specimens of fungi, mosses and vascular plants.
Technical Paper

Thermal Balance Testing of the European Robotic Arm

2000-07-10
2000-01-2496
As part of the European contribution to the Russian segment of the International Space Station (ISS), the European Robotic Arm (ERA) is designed under contract of the European Space Agency by Fokker Space as the Prime contractor. The particularly challenging aspect of the ERA thermal design is to enable ERA operation under all possible in-orbit thermal environmental conditions which are to be experienced throughout its 10 year life. These conditions can be between extreme cold without sunlight for hibernation to extreme hot with ERA operating in full sunlight in close vicinity to a large station item, for instance, the solar arrays. First a short description of the ERA system is given with a summary of the main thermal design features. The system level thermal balance test on the ERA Engineering Qualification Model (EQM) is intended to validate the system level thermal model, which consists of the subsystem thermal models as supplied by the respective subcontractors.
Technical Paper

Columbus Launch Preparation - Final System ATCS Tests Summary and Lessons Learned

2008-06-29
2008-01-2033
Final preparation and configuration of the Columbus module at the Kennedy Space Center (KSC) required the performance of system level tests with the Active Thermal Control System (ATCS). These tests represented the very last system level activities having been concluded on the Columbus module before handover to NASA for space shuttle integration. Those very last tests, performed with the ATCS comprised the final ATCS Leakage Test, the final calibration and adjustment of the Water Flow Selection Valves (WFSV) and Water On/Off Valves (WOOV) as well as a sophisticated ATCS Residual Air Removal test. The above listed tests have been successfully performed and test data evaluated for verification closeout as well as input delivery for operational Flight Rules and Procedures. Some of the above mentioned tests have been performed the first time hence, a succeeding lessons learned collection followed in order to improve the perspectives of future tests.
Technical Paper

ATV THERMAL CONTROL: Architecture and Jules Verne First Flight Results

2009-07-12
2009-01-2474
After several years of development the first European Automated Transfer Vehicle (ATV) developed by ESA called Jules Verne completed successfully its seven-month ISS logistics mission. Launched the 9 March 2008 on an Ariane 5 launcher, the ATV performed the 3 April 2008 its rendezvous and docking to the International Space Station to which it remained attached for five months. This paper presents in a first part the ATV thermal control architecture based on a innovative active thermal control design built around 40 Variable Conductance Heat Pipes (VCHP) controlling the heat rejection and in a second part the in-flight thermal control behavior of the ATV Jules Verne observed during the seven months mission in both free flight and attached to ISS phases.
Technical Paper

ANITA: An FTIR Spectrometer Flight Experiment for Space Craft Cabin Air Analysis

2001-07-09
2001-01-2160
In a multiple-phase ESA project starting in 1990, the technology for trace gas monitoring in a crewed space cabin was developed. Based on optical principles - a Fourier-Transform-Infrared Spectrometer in combination with sophisticated analysis S/W - the instrument has the characteristics to identify and quantity quasi on-line over 30 most relevant trace gases in air. A system for testing the analysis technology in a shuttle flight is presently under design. The ANITA (Analyzing Interferometer for Ambient Air) development status and plans for the space flight beginning of 2003 will be reported in this paper. The description of the analysis S/W was already reported in an earlier ICES paper [1].
Technical Paper

MELFI Cooling Performance Characterization and Verification

2000-07-10
2000-01-2308
The Minus Eighty (Degrees Celsius) Laboratory Freezer for the International Space Station (MELFI) is one of the freezers developed by ESA on behalf of NASA. Peculiar requirements for that facility are the long-term storage at low temperature, the rapid freezing of specimen to the required temperature, the large cold volume (300 l) and the low power consumption. To verify those requirements before the manufacturing of the flight hardware, a dedicated test campaign was performed on a ground model. This paper will start with a system overview, showing the main features of MELFI. The test set-up as well as their results will be presented and discussed, with particular emphasis on the methods used to predict the on-orbit (0-gravity) behaviour, by avoiding the sample internal convection and dewar internal convection during the test execution.
Technical Paper

Advanced ISS Air Monitoring — The ANITA and ANITA2 Missions

2009-07-12
2009-01-2523
After 11 months of successful operation onboard the ISS US laboratory Destiny, the air quality monitors ANITA (Analyzing Interferometer for Ambient Air) was brought back to Earth on STS126 (ULF2). ANITA is a technology demonstrator flight experiment for continuous air quality monitoring inside the crewed cabin of the ISS with low detection limits and high time resolution. For the first time, the dynamics of the detected trace gas concentrations could be directly resolved by ANITA and correlated to gas events in the cabin. The system is the result of a long term ESA technology development programme initiated more than seventeen years ago. The ANITA mission was a cooperative project between ESA and NASA. ESA's responsibilities were the provision of the H/W, the data acquisition and the data evaluation. NASA was responsible for the launch, accommodation and operation onboard ISS, data download and the transportation of ANITA back to the Earth.
X