Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Integration of Automated Safing Responses

2004-07-19
2004-01-2550
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These responses are designed to aid the crew in their response actions to the emergencies. This paper focuses on the integration of ISS responses to these three emergencies. It includes the ISS automatic integrated vehicle response and the initial crew response. Philosophies regarding the generic response to an on-orbit emergency are described. Software responses are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence. Possible future improvements are also described.
Technical Paper

International Space Station Automated Safing Responses to Hazardous Atmosphere

2004-07-19
2004-01-2549
Environmental Control and Life Support (ECLS) system functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions to the emergencies. The response to a hazardous atmosphere on board the ISS, including the automatic integrated vehicle response and crew actions, is the focus of this paper. Philosophies regarding the detection of and response to emergencies involving chemical releases are described. Vehicle configuration is discussed for currently supported automatic responses, and crew actions are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence.
Technical Paper

International Space Station (ISS) Automated Safing Responses to Fire Emergencies

2003-07-07
2003-01-2595
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responses to emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions during the emergencies. This paper focuses on the ISS response to fire emergencies. It includes the integrated ISS automatic vehicle response and crew actions for fire. Philosophies covered include fire detection, fire response, and post-fire atmosphere recovery. Current responses and crew actions are discussed for the existing vehicle configuration on-orbit. This includes modules in the assembly sequence up to and including the Docking Compartment (DC1). Possible future improvements to the fire emergency responses are also described.
Technical Paper

Development and Verification of an Electrode System for Electrolytic Generation of Silver Ion Biocide for the Space Station Internal Thermal Control System Fluid

2001-07-09
2001-01-2336
The Space Station Internal Thermal Control System (ITCS) fluid formulation is composed of a buffer solution consisting of a mixture of tri-sodium phosphate and sodium borate that produce a pH of approximately 9.5. A silver ion concentration is also specified in the formulation to assist in the control of microorganisms. The specification for the fluid places tight control on the allowed total organic carbon (TOC) concentration to further control possible food sources for microorganisms. Various ground tests conducted on the Laboratory and Airlock modules have demonstrated that the TOC specification is hard to maintain in a test environment. Test data also demonstrate that silver ion depletes as it comes in contact with various metals in the ITCS loop. When the silver is depleted, the microorganism populations can rapidly increase to a range of 105 to 106 colony forming units (CFU) per 100 milliliter.
X