Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Pre- and Post-Treatment Techniques for Spacecraft Water Recovery

1986-07-14
860982
This paper identifies methods of pre- and post-treatment applicable to spacecraft water recovery by distillation. The results of laboratory investigations show that oxidizers, which typically have been components of urine pretreatment formulas, produce many volatile organic compounds that contaminate the distillate and must later be removed by posttreatment.
Technical Paper

Review of Water Disinfection Techniques

1987-07-01
871488
Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control.
Technical Paper

Catalytic Decomposition of Gaseous Byproducts from Primary Solid Waste Treatment Technologies

2006-07-17
2006-01-2128
Several solid waste management (SWM) systems currently under development for spacecraft deployment result in the production of a variety of toxic gaseous contaminants. Examples include the Plastic Melt Waste Compactor (PMWC) at NASA - Ames Research Center1, the Oxidation/Pyrolysis system at Advanced Fuel Research2, and the Microwave Powered Solid Waste Stabilization and Water Recovery (MWSWS&WR) System at UMPQUA Research Company (URC). ...The current International Space Station (ISS) airborne contaminant removal system, the Trace Contaminant Control Subassembly (TCCS), is designed to efficiently process nominal airborne contaminants in spacecraft cabin air. However, the TCCS has no capability to periodically process the highly concentrated toxic vapors of variable composition, which are generated during solid waste processing, without significant modifications.
Technical Paper

Development and Testing of a Breadboard Compactor for Advanced Waste Management Designs

2007-07-09
2007-01-3267
Waste management is a vital function of spacecraft life support systems as it is necessary to meet crew health and safety and quality of life requirements. ...Reducing the volume of trash prior to storage is a viable means to recover habitable volume, and is therefore a particularly desirable waste management function to implement in the CEV, and potentially in other spacecraft as well. Research is currently being performed at NASA Ames Research Center to develop waste compaction systems that can provide both volume and mass savings for the CEV and other missions.
Technical Paper

Regenerable Biocide Delivery Unit

1991-07-01
911406
The Microbial Check Valve (MCV) is used on the Space Shuttle to impart an iodine residual to the drinking water to maintain microbial control. Approximately twenty MCV locations have been identified in the Space Station Freedom design, each with a 90 day life. This translates to 2400 replacement units in 30 years of operation. An in situ regeneration concept has been demonstrated that will reduce this replacement requirement to less than 300 units based on data to date and potentially fewer as further regenerations are accomplished. A totally automated system will result in significant savings in crew time, resupply requirements and replacement costs. An additional feature of the device is the ability to provide a concentrated biocide source (200 mg/liter of I2) that can be used to superiodinate systems routinely or after a microbial upset. This program was accomplished under NASA Contract Number NAS9-18113.
Technical Paper

Metal Oxide Regenerate Carbon Dioxide Removal System for an Advanced Portable Life Support System

1989-07-01
891595
The extravehicular activity (EVA) requirements for Space Station Freedom and future long-duration space missions demand advanced technologies for the life support subsystems in the astronaut portable life support system (PLSS). A NASA-funded program is currently underway to develop a full-scale, breadboard, regenerate metal oxide carbon dioxide (CO2) removal system. This technology is a promising concept to replace the lithium hydroxide absorber presently used for removing CO2 in the recycled breathing gas in the PLSS, but cannot be efficiently regenerated to be used for another EVA mission. In the metal oxide carbon dioxide removal system, an “active” metal oxide compound, contained within a solid absorbent material, effectively removes the CO2 by chemically reacting to form a metal carbonate during astronaut EVA. The absorbent is then regenerated thermally, by decomposing the resulting carbonate and thereby releasing CO2, to reform the metal oxide.
Technical Paper

Water Recovery from Wastes in Space Habitats-a Comparative Evaluation of SBIR Prototypes

2009-07-12
2009-01-2342
Water is of critical importance to space missions due to crew needs and the cost of supply. To control mission costs, it is essential to recycle water from all available wastes - both solids and liquids. Water recovery from liquid water wastes has already been accomplished on space missions. For instance, a Water Recycling System (WRS) is currently operational on the International Space Station (ISS). It recovers water from urine and humidity condensate and processes it to potable water specifications. However, there is more recoverable water in solid wastes such as uneaten food, wet trash, feces, paper and packaging material, and brine. Previous studies have established the feasibility of obtaining a considerable amount of water and oxygen from these wastes (Pisharody et al, 2002; Fisher et al, 2008; Wignarajah et al, 2008).
X