Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. ...Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management.
Technical Paper

Waste Compaction Technology Development for Human Space Exploration Missions

2007-07-09
2007-01-3265
Human occupied spacecraft and extraterrestrial habitats must be able to effectively manage the waste generated throughout the entire mission duration. ...The design specifications of the compactors being developed at NASA Ames Research Center are based on NASA's initial 18-day lunar sortie missions using the Orion spacecraft as outlined in the new Space Exploration Initiative. This paper describes the compactor design methodology and concepts as well as a description of the current prototype hardware developed at NASA Ames for the Orion Crew Exploration Vehicle.
Technical Paper

Catalytic Decomposition of Gaseous Byproducts from Primary Solid Waste Treatment Technologies

2006-07-17
2006-01-2128
Several solid waste management (SWM) systems currently under development for spacecraft deployment result in the production of a variety of toxic gaseous contaminants. Examples include the Plastic Melt Waste Compactor (PMWC) at NASA - Ames Research Center1, the Oxidation/Pyrolysis system at Advanced Fuel Research2, and the Microwave Powered Solid Waste Stabilization and Water Recovery (MWSWS&WR) System at UMPQUA Research Company (URC). ...The current International Space Station (ISS) airborne contaminant removal system, the Trace Contaminant Control Subassembly (TCCS), is designed to efficiently process nominal airborne contaminants in spacecraft cabin air. However, the TCCS has no capability to periodically process the highly concentrated toxic vapors of variable composition, which are generated during solid waste processing, without significant modifications.
Technical Paper

Development and Testing of a Breadboard Compactor for Advanced Waste Management Designs

2007-07-09
2007-01-3267
Waste management is a vital function of spacecraft life support systems as it is necessary to meet crew health and safety and quality of life requirements. ...Reducing the volume of trash prior to storage is a viable means to recover habitable volume, and is therefore a particularly desirable waste management function to implement in the CEV, and potentially in other spacecraft as well. Research is currently being performed at NASA Ames Research Center to develop waste compaction systems that can provide both volume and mass savings for the CEV and other missions.
Technical Paper

Testing and Analysis of the First Plastic Melt Waste Compactor Prototype

2005-07-11
2005-01-3080
A half scale version of a device called the Plastic Melt Waste Compactor prototype is being developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This paper details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.
Technical Paper

Development of Plastic Melt Waste Compactor for Space Missions - Experiments and Prototype Design

2004-07-19
2004-01-2378
This paper describes current work at NASA Ames Research Center on the development of a heat melt compactor that can be used on both near term and far term missions. Preliminary tests have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Preliminary tests were conducted to characterize the volume reduction, bonding, encapsulation and plastic extrusion of the waste composite. The preliminary tests are designed to provide the data needed to design the first prototype Plastic Melt Waste Compactor.
Technical Paper

Water Recovery from Wastes in Space Habitats-a Comparative Evaluation of SBIR Prototypes

2009-07-12
2009-01-2342
Water is of critical importance to space missions due to crew needs and the cost of supply. To control mission costs, it is essential to recycle water from all available wastes - both solids and liquids. Water recovery from liquid water wastes has already been accomplished on space missions. For instance, a Water Recycling System (WRS) is currently operational on the International Space Station (ISS). It recovers water from urine and humidity condensate and processes it to potable water specifications. However, there is more recoverable water in solid wastes such as uneaten food, wet trash, feces, paper and packaging material, and brine. Previous studies have established the feasibility of obtaining a considerable amount of water and oxygen from these wastes (Pisharody et al, 2002; Fisher et al, 2008; Wignarajah et al, 2008).
X