Refine Your Search

Topic

Author

Search Results

Technical Paper

Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool

2019-01-09
2019-26-0235
Vehicle aerodynamic design has a critical impact on fuel efficiency of the vehicle. Reducing aerodynamic wind resistance of the vehicle's exterior shape and reducing losses associated with requirements for engine compartment cooling through vehicle front openings plays key role in achieving desired aerodynamic efficiency. Today fairly large number of computational fluid dynamics (CFD) simulations are being performed during the vehicle aerodynamic design and development process and it is rapidly increasing day by day. Vehicle aerodynamic design and development process involves mainly aerodynamic shape development, aerodynamic optimizations of vehicle external components (side view mirror, spoilers, underbody shield etc.) and number of” what if studies during preliminary design process. Licensing costs of the available commercial CFD simulation solver has significant impact on product development cost when numbers of aerodynamic simulations expand.
Technical Paper

Derivation of Test Schedule for Clutch Using Road Load Data Analysis and Energy Dissipation as Basis

2018-04-03
2018-01-0389
During every clutch engagement energy is dissipated in clutch assembly because of relative slippage of clutch disc w.r.t. flywheel and pressure plate. Energy dissipated in clutch is governed by many design parameters like driveline configuration of the vehicle vis-a-vis vehicle mass, and operational parameters like road conditions, traffic conditions. Clutch burning failure, which is the major failure mode of clutch assembly, is governed by energy dissipation phenomenon during clutch engagement. Clutch undergoes different duty cycles during usage in city traffic, highways or hilly regions during its lifetime. A test schedule was derived using energy dissipated during every clutch engagement event as a base and using road load data collected on the vehicle. Road load data was collected in different road mix conditions comprised of city traffic, highway, hilly region, rough road for few hundred kilometers.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Optimization of AC Control in Hybrid Electric Vehicles during Urban Drive Conditions

2017-01-10
2017-26-0087
Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
Technical Paper

Simulation Based Development, Component Optimization and Integration for a Metropolitan Hybrid Electric Vehicle

2017-01-10
2017-26-0084
The authors of this technical paper conceptualize and illustrate a powertrain architecture for a hybrid electric vehicle coupled with a unique strategy to reduce a real life problem of driving in snail paced traffic. This architecture utilizes a relatively low powered hybrid electric prime mover that is generally used in mild hybrid vehicles, in an arrangement similar to a parallel hybrid system. Here, the electric machine is mounted on the input shaft of the gearbox and the clutch is actuated automatically through an Automated Manual Transmission (AMT) system. Therefore, it is possible to completely disengage the engine from the driveline and drive the vehicle independently through an appropriately sized electric prime mover. The high gear ratio between the drivetrain and the electric prime mover at lower gears can be leveraged to provide low velocity electric creep mode during which the vehicle can function as a pure Electric Vehicle (EV) while engine remains off.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

Tackle Low Frequency Structural Vibration in AMT Car using Gear Shift Schedule Optimization

2017-01-10
2017-26-0198
The present work focuses on optimization of gear shift pattern of an AMT vehicle to improve its NVH performance without causing any adverse effect on any other vehicle performance attribute. The vehicle which was identified with the structural body resonance at low frequency had discomforting boom noise in a particular engine rpm zone and at corresponding vehicle speed. With the initial shift pattern (will be referred as V1 gear shift schedule), the gear shifts were calibrated such that when vehicle is driven in the city with 20 to 60 kmph speed, the vehicle operated mostly in the best fuel economy zone but it used to pass through structural resonance frequency. This resulted in the presence of continuous boom leading to an unpleasant driving experience. In order to avoid the presence of boom noise during city driving, the gear shift points were optimized (will be referred as V2 gear shift schedule) such that the vehicle did not operate in affected engine speed range.
Journal Article

Development of 1.2L Gasoline Turbocharged MPFI Engine for Passenger Car Application

2017-01-10
2017-26-0026
In the emerging technology trend, there is continuous demand for increase in engine performance in terms of power & torque while providing competitive fuel efficiency. Understanding and fulfillment of complex customer requirements with affordable technology is extremely challenging. In order to meet potential conflicting needs and offer ‘fun to drive’ experience to customers, Tata Motors has developed first in segment turbocharged gasoline MPFI engine. Further in order to create market differentiator, multi drive modes were introduced as segment first feature. The boosted compact 1200 cc engine while developing 90 Ps power, delivers 140 N-m torque over a wide range of 1500-4000 rpm, best suited for Indian drive conditions. This performance boost is nearly 40% over and above performance of comparable NA engine without any compromise on vehicle level fuel efficiency.
Technical Paper

Performance Optimization of Electronically Controlled Hydraulic Fan Drive (HFD) Used in Commercial Application

2016-04-05
2016-01-0182
Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Opportunities and Control Measures for Sustainable Transport Growth in Emerging Economy Regions-India

2013-04-08
2013-01-1037
Sustainable development is a very complex concept involving several inter-related issues and concerns. Globalization has given a new dimension to social, economic and environmental development associated with the perceived responsibilities and growth indicators. Both developing and developed countries have the opportunities to exploit comparative advantages in the changing economic, social and environmental scenario while targeting sustainable growth together with expansion of the business prospects. Every region perceives these opportunities with different notion. There is a plethora of indicators for assessing sustainability. However, assessment criteria, prioritization and trade off for a given sustainability parameter against the other could be very complex while evolving transport growth model in emerging economies.
Technical Paper

Energy Efficient Hydraulic Power Assisted Steering System (E2HPAS)

2012-04-16
2012-01-0976
A hydraulic-assisted power steering system on a vehicle has a steering pump which is directly driven from the engine continuously. In real world, the assistance from the steering pump is useful only while maneuvering. During a typical highway drive, assistance from this power steering pump remains unused for majority (76%) of the time; although the continuously rotating power steering pump keeps consuming energy from the engine. An electronic controller has been provided for the electro-magnetic pairing device of the power steering pump in order to provide assistance for steering based on driver demand only. The electromagnetic pairing device integrated on the steering pump can be made to engage/disengage based on the driver demand through the electronic controller.
Technical Paper

Solar Assisted Vehicle Electrical System (S.A.V.E.)

2012-04-16
2012-01-1058
S.A.V.E. (SOLAR-ASSISTED VEHICLE ELECTRICAL SYSTEM) is a microcontroller-based closed loop system designed to optimize the duty cycle of alternator in conventional vehicle electrical system. This has been done by integrating a SOLAR PANEL on the rooftop of a popular hatchback. The SOLAR PANEL supplies continuous power to battery for charging thereby reducing alternator duty cycle. Consequently, in order to optimize/control alternator functioning based on demand, a microcontroller has been incorporated. S.A.V.E. consists of a microcontroller which senses the instantaneous electrical load (in terms of current & voltage drawn) from battery. The controller using the intelligent algorithm keeps on checking this real-time consumption with the threshold values & decides when to activate/deactivate alternator. Thus with this controller, a) reduction in actual CO₂ emission & consequent, and b) 6% improvement in vehicle fuel efficiency has been achieved.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
X