Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Capturing Combustion Chemistry of Carbon-Neutral Transportation Fuels with a Library of Model Fuels

2023-09-29
2023-32-0001
Carbon-neutral (CN) fuels will be part of the solution to reducing global warming effects of the transportation sector, along with electrification. CN fuels such as hydrogen, ammonia, biofuels, and e-fuels can play a primary role in some segments (aviation, shipping, heavy-duty road vehicles) and a secondary role in others (light-duty road vehicles). The composition and properties of these fuels vary substantially from existing fossil fuels. Fuel effects on performance and emissions are complex, especially when these fuels are blended with fossil fuels. Predictively modeling the combustion of these fuels in engine and combustor CFD simulations requires accurate representation of the fuel blends. We discuss a methodology for matching the targeted fuel properties of specific CN fuels, using a blend of surrogate fuel components, to form a fuel model that can accurately capture fuel effects in an engine simulation.
Technical Paper

Predicting the Combustion Behavior in a Small-Bore Diesel Engine

2021-04-06
2021-01-0508
Accurate modeling of the characteristics of diesel-engine combustion leads to more efficient design. Accurate modeling in turn depends on correctly capturing spray dynamics, turbulence, and fuel chemistry. This work presents a computational fluid dynamics (CFD) investigation of a well characterized small-bore direct injection diesel engine at Sandia National Laboratories’ Combustion Research Facility. The engine has been studied for two piston-bowls geometries and various injection timings. Simulation of these conditions test the predictive capabilities of our approach to diesel engine modeling using Ansys Forte. An experimental database covering a wide range of operating conditions is provided by the Engine Combustion Network for this engine, which is used to validate our modeling approach. Automatic and solution-adaptive meshing is used, and the recommended settings are discussed.
Technical Paper

Validation Studies of a Detailed Soot Chemistry for Gasoline and Diesel Engines

2021-04-06
2021-01-0618
Accurately predicting the evolution of soot mass and soot particle numbers under engine conditions is critical to advanced engine design. A detailed soot-chemistry model that can capture soot under gasoline and diesel conditions without tuning is necessary for such predictions. Building confidence in the predictive usage of the chemistry in engine simulations requires validating the soot kinetics over a wide range of operating conditions and fuels, using data from different experimental techniques, and using sources from laboratory flames to engines. This validation study focuses on a soot-chemistry model that considers multiple nucleation, growth, and oxidation reaction pathways. It involves 14 gas-phase precursors and considers the effect of different soot-particle surface sites.
Technical Paper

Impact of Aromatics on Engine Performance

2019-04-02
2019-01-0948
Aromatics constitute a significant portion of refinery fuels. Characterizing the impact of various aromatic components on combustion and emissions facilitates formulation of surrogate fuels for engine simulations. The impact of blending aromatics in fuel surrogates is usually nonlinear for ignition characteristics responsible for knocking in spark engines and for combustion phasing in diesel engines. In this work, we have characterized the behavior of nine aromatics components under engine-relevant conditions. A self-consistent and validated detailed kinetics mechanism has been developed for gasoline and diesel surrogates that contains toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, isomers of xylene, 1,2,4-trimethylbenzene, and 1-methylnaphthalene. Numerical experiments using 0-D and 1-D models have been performed to study the relative behavior of these aromatics for different reacting conditions.
Technical Paper

The Computational Cost and Accuracy of Spray Droplet Collision Models

2019-04-02
2019-01-0279
This study focuses on Lagrangian spray models that are commonly used in engine CFD simulations. In modeling sprays, droplet collision is one of the physical phenomena that must be accounted for. There are two main parts of droplet collision models for sprays - detecting colliding pairs of droplets and predicting the outcomes of these collisions. For the first part, we focus on the efficiency of the algorithm. We present an implementation of the arbitrary adaptive collision mesh model of Hou and Schmidt [1], and examine its efficiency in dealing with large simulations. Through theoretical analysis and numerical tests, we show that the computational cost of this model scales pseudo-linearly with respect to the number of parcels in the sprays. Regarding the second part, we examine the variations in existing phenomenological models used for predicting binary droplet collision outcomes. A quantitative accuracy metric is used to evaluate the models with respect to the experimental data set.
Technical Paper

Evaluation and Validation of Large-Eddy-Simulation (LES) for Gas Jet and Sprays

2017-03-28
2017-01-0844
Large-eddy simulation (LES) is a useful approach for the simulation of turbulent flow and combustion processes in internal combustion engines. This study employs the ANSYS Forte CFD package and explores several key and fundamental components of LES, namely, the subgrid-scale (SGS) turbulence models, the numerical schemes used to discretize the transport equations, and the computational mesh. The SGS turbulence models considered include the classic Smagorinsky model and a dynamic structure model. Two numerical schemes for momentum convection, quasi-second-order upwind (QSOU) and central difference (CD), were evaluated. The effects of different computational mesh sizes controlled by both fixed mesh refinement and a solution-adaptive mesh-refinement approach were studied and compared. The LES models are evaluated and validated against several flow configurations that are critical to engine flows, in particular, to fuel injection processes.
Technical Paper

Accurate and Dynamic Accounting of Fuel Composition in Flame Propagation During Engine Simulations

2016-04-05
2016-01-0597
A methodology has been implemented to calculate local turbulent flame speeds for spark ignition engines accurately and on-the-fly in 3-D CFD modeling. The approach dynamically captures fuel effects, based on detailed chemistry calculations of laminar flame speeds. Accurately modeling flame propagation is critical to predicting heat release rates and emissions. Fuels used in spark ignition engines are increasingly complex, which necessitates the use of multi-component fuels or fuel surrogates for predictive simulation. Flame speeds of the individual components in these multi-component fuels may vary substantially, making it difficult to define flame speed values, especially for stratified mixtures. In addition to fuel effects, a wide range of local conditions of temperature, pressure, equivalence ratio and EGR are expected in spark ignition engines.
Technical Paper

CFD Modeling of Spark Ignited Gasoline Engines- Part 1: Modeling the Engine under Motored and Premixed-Charge Combustion Mode

2016-04-05
2016-01-0591
One of the best tools to explore complicated in-cylinder physics is computational fluid dynamics (CFD). In order to assess the accuracy and reliability of the CFD simulations, it is critical to perform validation studies over different engine operating conditions. Simulation-based design of SI engines requires predictive capabilities, where results do not need to be tuned for each operating condition. This requires the models adopted to simulate their respective engine physics to be reliable under a broad range of conditions. A detailed set of experimental data was obtained to validate the CFD predictions of SI engine combustion.
Technical Paper

CFD Modeling of Spark Ignited Gasoline Engines- Part 2: Modeling the Engine in Direct Injection Mode along with Spray Validation

2016-04-05
2016-01-0579
Gasoline Direct Injection (GDI) is a key technology in the automotive industry for improving fuel economy and performance of gasoline internal combustion engines. GDI engine performance and emission characteristics are mainly determined by the complex interaction of in-cylinder flow, mixture formation and subsequent combustion processes. In a GDI engine, mixture formation depends on spray characteristics. Spray evolution and mixture formation is critical to GDI engine operation. In this work, a multi-component surrogate fuel blend was used to represent the chemical and physical properties of the gasoline employed in the experimental engine tests. Multi-component spray models were also validated in this study against experimental spray injection measurements in a chamber. The spray-chamber data include spray-penetration lengths, transient spray velocities and droplet Sauter mean diameter (SMD) at different axial and radial distances from the spray tip, obtained using a PDPA system.
X