Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Driving Towards a Sustainable Future: Leveraging Connected Vehicle Data for Effective Carbon Emission Management

2024-01-08
2023-36-0145
The rise of greenhouse gas emissions has reached historic levels, with 37 billion tons of CO2 released into the atmosphere in 2018 alone. In the European Union, 32% of these emissions come from transportation, with 73.3% of that percentage coming from vehicles. To address this problem, solutions such as cleaner fuels and more efficient engines are necessary. Artificial Intelligence can also play a crucial role in climate analysis and verification to move towards a more sustainable future. By utilizing connected vehicle data, automakers can analyze real-time vehicle performance data to identify opportunities for improvement and reduce carbon emissions. This approach benefits the environment, improves vehicle quality, and reduces engineering work time, making it a win-win solution. Connected vehicle data offers a wealth of information on vehicle performance, such as fuel consumption and carbon emissions.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Experimental Characterization of Aluminum Alloys for the Automotive Industry

2023-02-10
2022-36-0031
Several factors stimulate the development of new materials in the industry. From specific physical-chemical characteristics to strategic market advantages, technology companies seek to diversify their raw materials. In the automotive sector, the current trend of electrification in vehicles and the increase of government and market demand for reducing the emission of greenhouse gases makes lighter materials more and more necessary. As electric vehicles use heavy batteries, the vehicle weight is directly related to its power demand and level of autonomy. The same applies to internal combustion vehicles where the vehicle weight directly impacts fuel consumption and emissions. In this context, there is a lot of research on special alloys and composites to replace traditional materials. Aluminum is a good alternative to steel due to its density which is almost five times smaller while that material still has good mechanical properties and has better impact absorption capability.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

Application of Data Analytics to Decouple Historical Real-World Trip Trajectories into Representative Maneuvers for Driving Characterization

2021-04-06
2021-01-0169
Historical driver behavior and drive style are crucial inputs in addition to V2X connectivity data to predict future events as well as fuel consumption of the vehicle on a trip. A trip is a combination of different maneuvers a driver executes to navigate a route and interact with his/her environment including traffic, geography, topography, and weather. This study leverages big data analytics on real-world customer driving data to develop analytical modeling methodologies and algorithms to extract maneuver-based driving characteristics and generate a corresponding maneuver distribution. The distributions are further segmented by additional categories such as customer group and type of vehicle. These maneuver distributions are used to build an aggressivity distribution database which will serve as the parameter basis for further analysis with traffic simulation models.
Technical Paper

Application of the Power-Based Fuel Consumption Model to Commercial Vehicles

2021-04-06
2021-01-0570
Fuel power consumption for light duty vehicles has previously been shown to be proportional to vehicle traction power, with an offset for overhead and accessory losses. This allows the fuel consumption for an individual powertrain to be projected across different vehicles, missions, and drive cycles. This work applies the power-based model to commercial vehicles and demonstrates its usefulness for projecting fuel consumption on both regulatory and customer use cycles. The ability to project fuel consumption to different missions is particularly useful for commercial vehicles, as they are used in a wide range of applications and with customized designs. Specific cases are investigated for Light and Medium Heavy- Duty work trucks. The average power required by a vehicle to drive the regulatory cycles varies by nearly a factor 10 between the Class 4 vehicle on the ARB Transient cycle and the loaded Class 7 vehicle at 65 mph on grade.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Technical Paper

Combustion and Emission Characteristics of SI and HCCI Combustion Fueled with DME and OME

2020-04-14
2020-01-1355
DME has been considered an alternative fuel to diesel fuel with promising benefits because of its high reactivity and volatility. Research shows that an engine fueled with DME will produce zero smoke emissions. However, the storage and the handling of the fuel are underlying difficulties owing to its high vapour pressure (530 kPa @ 20 °C). In lieu, OME1 fuel, a derivate of DME, offers advantages exhibited with DME fuel, all the while being a liquid fuel for engine application. In this work, engine tests are performed to realize the combustion behaviour of DME and OME1 fuel on a single-cylinder research engine with a compression ratio of 9.2:1. The dilution ratio of the mixture is progressively increased in two manners, allowing more air in the cylinder and applying exhaust gas recirculation (EGR). The high reactivity of DME suits the capability to be used in compression ignition combustion whereas OME1 must be supplied with a supplemental spark to initiate the combustion.
Journal Article

Unified Power-Based Vehicle Fuel Consumption Model Covering a Range of Conditions

2020-04-14
2020-01-1278
Previously fuel consumption on a drive cycle has been shown to be proportional to traction work, with an offset for powertrain losses. This model had different transfer functions for different drive cycles, performance levels, and applied powertrain technologies. Following Soltic it is shown that if fuel usage and traction work are both expressed in terms of cycle average power, a wide range of drive cycles collapse to a single transfer function, where cycle average traction power captures the drive cycle and the vehicle size. If this transfer function is then normalized by weight, i.e. by working in cycle average power/weight (P/W), a linear model is obtained where the offset is mainly a function of rated performance and applied technology. A final normalization by rated power/weight as the primary performance metric further collapses the data to express the cycle average fuel power/rated power ratio as a function of cycle average traction power/rated power ratio.
Technical Paper

THE EFFECT OF BIODIESEL ON THE ELECTRICAL PROPERTIES OF AUTOMOTIVE ELASTOMERIC COMPOUNDS

2020-01-13
2019-36-0327
The lack of electrical conductivity on materials, which are used in automotive fuel systems, can lead to electrostatic charges buildup in the components of such systems. This accumulation of energy can reach levels that exceed their capacity to withstand voltage surges, which considerably increases the risk of electrical discharges or sparks. Another important factor to consider is the conductivity of the commercially available fuels, such as biodiesel, which contributes to dissipate these charges to a proper grounding point in automobiles. From 2013, the diesel regulation in Brazil have changed and the levels of sulfur in the composition of diesel were reduced considerably, changing its natural characteristic of promoting electrostatic discharges, becoming more insulating.
Technical Paper

CVT Ratio Scheduling Optimization with Consideration of Engine and Transmission Efficiency

2019-04-02
2019-01-0773
This paper proposes a transmission ratio scheduling and control methodology for a vehicle with a Continuous Variable Transmission (CVT) and a downsized gasoline engine. The methodology is designed to deliver the optimal vehicle fuel economy within drivability and performance constraints. Traditionally, the Optimum Operating Line (OOL) generated from an engine brake specific fuel consumption map is considered to be the best option for ratio scheduling, as it defines the points at which engine efficiency is maximized. But the OOL does not consider transmission efficiency, which may be a source of significant losses. To develop a CVT ratio schedule that offers the best fuel economy for the complete powertrain, an empirical approach was used to minimize fuel consumption by considering engine efficiency, CVT efficiency, and requested vehicle power. A backward-looking model was used to simulate a standard driving cycle (FTP-75) and develop a new powertrain-optimal operating line (P-OOL).
Technical Paper

Impacts of WLTP Test Procedure on Fuel Consumption Estimation of Common Electrified Powertrains

2019-04-02
2019-01-0306
The new European test procedure, called the worldwide harmonized light vehicle test procedure (WLTP), deviates in some details from the current NEDC-based test which will have an impact on the determination of the official EU fuel consumption values for the new vehicles. The adaptation to the WLTP faces automakers with new challenges for meeting the stringent EU fuel consumption and CO2 emissions standards. This paper investigates the main changes that the new test implies to a mid-size sedan electrified vehicle design and quantifies their impact on the vehicles fuel economy. Three common electrified powertrain architectures including series, parallel P2, and powersplit are studied. A Pontryagin’s Minimum Principle (PMP) optimization-based energy management control strategy is developed to evaluate the energy consumption of the electrified vehicles in both charge-depleting (CD) and charge-sustaining (CS) modes.
Journal Article

Improved Analytically Derived CO2 Prediction of Medium Duty Chassis-Certified Vehicles

2019-04-02
2019-01-0311
Medium duty vehicles come in many design variations, which makes testing them all for CO2 impractical. As a result there are multiple ways of reporting CO2 emissions. Actual tests may be performed, data substitution may be used, or CO2 values may be estimated using an analytical correction. The correction accounts for variations in road load force coefficients (f0, f1, f2), weight, and axle ratio. The EPA Analytically Derived CO2 equation (EPA ADC) was defined using a limited set of historical data. The prediction error is shown to be ±130 g/mile and the sensitivities to design variables are found to be incorrect. Since the absolute CO2 is between 500 and 1,000 g/mi, the equation has limited usefulness. Previous work on light duty vehicles has demonstrated a linear relationship between vehicle fuel consumption, powertrain properties and total vehicle work. This relationship improves the accuracy and avoids co-linearity and non-orthogonality of the input variables.
Journal Article

Decoupling Vehicle Work from Powertrain Properties in Vehicle Fuel Consumption

2018-04-03
2018-01-0322
The fuel consumption of a vehicle is shown to be linearly proportional to (1) total vehicle work required to drive the cycle due to mass and acceleration, tire friction, and aerodynamic drag and (2) the powertrain (PT) mechanical losses, which are approximately proportional to the engine displaced volume per unit distance travelled (displacement time gearing). The fuel usage increases linearly with work and displacement over a wide range of applications, and the rate of increase is inversely proportional to the marginal efficiency of the engine. The theoretical basis for these predictions is reviewed. Examples from current applications are discussed, where a single PT is used across several vehicles. A full vehicle cycle simulation model also predicts a linear relationship between fuel consumption, vehicle work, and displacement time gearing and agrees well with the application data.
Journal Article

Tier 2 Test Fuel Impact to Tier 3 Aftertreatment Systems and Calibration Countermeasures

2018-04-03
2018-01-0941
During the course of emissions and fuel economy (FE) testing, vehicles that are calibrated to meet Tier 3 emissions requirements currently must demonstrate compliance on Tier 3 E10 fuel while maintaining emissions capability with Tier 2 E0 fuel used for FE label determination. Tier 3 emissions regulations prescribe lower sulfur E10 gasoline blends for the U.S. market. Tier 3 emissions test fuels specified by EPA are required to contain 9.54 volume % ethanol and 8-11 ppm sulfur content. EPA Tier 2 E0 test fuel has no ethanol and has nominal 30 ppm sulfur content. Under Tier 3 rules, Tier 2 E0 test fuel is still used to determine FE. Tier 3 calibrations can have difficulty meeting low Tier 3 emissions targets while testing with Tier 2 E0 fuel. Research has revealed that the primary cause of the high emissions is deactivation of the aftertreatment system due to sulfur accumulation on the catalysts.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
Journal Article

Characterization of Powertrain Technology Benefits Using Normalized Engine and Vehicle Fuel Consumption Data

2018-04-03
2018-01-0318
Vehicle certification data are used to study the effectiveness of the major powertrain technologies used by car manufacturers to reduce fuel consumption. Methods for differentiating vehicles effectively were developed by leveraging theoretical models of engine and vehicle fuel consumption. One approach normalizes by displacement per unit distance, which puts both fuel used and vehicle work in mean effective pressure units, and is useful when comparing engine technologies. The other normalizes by engine rated power, a customer-relevant output metric. The normalized work/power is proportional to weight/power, the most fundamental performance metric. Certification data for 2016 and 2017 U.S. vehicles with different powertrain technologies are compared to baseline vehicles with port fuel injection (PFI) naturally aspirated engines and six-speed automatic transmissions.
X