Refine Your Search

Topic

Author

Search Results

Technical Paper

Disc Brake Pad Corrosion Adhesion: Test-to-Field Issue Correlation, and Exploration of Friction Physical Properties Influence to Adhesion Break-Away Force

2016-09-18
2016-01-1926
Brake pad to rotor adhesion following exposure to corrosive environments, commonly referred to as “stiction”, continues to present braking engineers with challenges in predicting issues in early phases of development and in resolution once the condition has been identified. The goal of this study took on two parts - first to explore trends in field stiction data and how testing methods can be adapted to better replicate the vehicle issue at the component level, and second to explore the impacts of various brake pad physical properties variation on stiction propensity via a controlled design of experiments. Part one will involve comparison of various production hardware configurations on component level stiction tests with different levels of prior braking experience to evaluate conditioning effects on stiction breakaway force.
Technical Paper

Dynamic Spot Weld Testing

2009-04-20
2009-01-0032
Static and dynamic strength tests were performed on spot welded specimens made of dual-phase (DP) 780 and mild steels (DQSK). Lap-shear (LS) and cross-tension (CT) as well as a new mixed mode specimen were studied using MTS hydraulic universal testing machine for static tests and drop weight tower for dynamic tests. Three weld nugget sizes were made for each steel and CT and LS. DP780 with one weld size was also tested in mixed mode. Load and displacement as functions of time and fracture mode of the spot welds were recorded. Representative data are reported in this paper.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

Robust Analysis of Clamp Load Loss in Aluminum Threads due to Thermal Cycling

2009-04-20
2009-01-0989
A DFSS study identified a new mechanism for clamp load loss in aluminum threads due to thermal cycling. In bolted joints tightened to yield, the difference in thermal expansion between the aluminum and steel threads can result in a loss of clamp load with each thermal cycle. This clamp load loss is significantly greater than the loss that can be explained by creep alone. A math model was created and used to conduct a robust analysis. This analysis led to an understanding of the design factors necessary to reduce the cyclic clamp load loss in the aluminum threads. This understanding was then used to create optimized design solutions that satisfy constraints common to powertrain applications. Estimations of clamp load loss due to thermal cycling from the math model will be presented. The estimates of the model will be compared to observed physical test data. A robust analysis, including S/N and mean effect summary will be presented.
Technical Paper

Volume Morphing to Compensate Stamping Springback

2009-04-20
2009-01-0982
A common occurrence in computer aided design is the need to make changes to an existing CAD model to compensate for shape changes which occur during a manufacturing process. For instance, finite element analysis of die forming or die tryout results may indicate that a stamped panel springs back after the press line operation so that the final shape is different from nominal shape. Springback may be corrected by redesigning the die face so that the stamped panel springs back to the nominal shape. When done manually, this redesign process is often time consuming and expensive. This article presents a computer program, FESHAPE, that reshapes the CAD or finite element mesh models automatically. The method is based on the technique of volume morphing pioneered by Sederberg and Parry [Sederberg 1986] and refined in [Sarraga 2004]. Volume morphing reshapes regions of surfaces or meshes by reshaping volumes containing those regions.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

Early Noise Analysis for Robust Quiet Brake Design

2009-04-20
2009-01-0858
At the early design stage it is easier to achieve impacts on the brake noise. However most noise analyses are applied later in the development stage when the design space is limited and changes are costly. Early noise analysis is seldom applied due to lack of credible inputs for the finite element modeling, the sensitive nature of the noise, and reservations on the noise event screening of the analysis. A high quality brake finite element model of good components’ and system representation is the necessary basis for credible early noise analysis. That usually requires the inputs from existing production hardware. On the other hand in vehicle braking the frequency contents and propensity of many noise cases are sensitive to minor component design modifications, environmental factors and hardware variations in mass production. Screening the noisy modes and their sensitivity levels helps confirm the major noisy event at the early design stage.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Model Driven Testing

2008-04-14
2008-01-0743
While the industry has recognized the value of modeling and code generation, the role of verification has taken a limited second tier role. Model Based Testing (MBT) is typically discussed in the context of automation of testing activities to eliminate the burden of generation and execution of tests. Unfortunately, this objective of effort minimization has skewed solutions away from using quality as a guiding metric. Alternatively, we have identified the simple objective of increasing the quality of testing practices and productivity of developers. In the following paper we introduce the integration of traditional software quality practices of functional, unit, and regression testing with the automated, model-driven world. This approach enables a quantitative approach to model driven software quality. The result is a robust technique that enables confident use of model-based development for production applications.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Forming Simulation and Validation of Laminated Steel Panels

2007-04-16
2007-01-1675
Laminated steel has been increasingly applied in automotive products for vibration and noise reduction. One of the major challenges the laminated steel poses is how to simulate forming processes and predict formability severity with acceptable correlation in production environment, which is caused by the fact that a thin polymer core possesses mechanical properties with significant difference in comparison with that of steel skins. In this study a cantilever beam test is conducted for investigating flexural behavior of the laminated steel and a finite element modeling technique is proposed for forming simulation of the laminated steel. Two production panels are analyzed for formability prediction and the results are compared with those from the try-out for validation. This procedure demonstrates that the prediction and try-out are in good agreement for both panels.
Technical Paper

Strategies for Managing Vehicle Mass throughout the Development Process and Vehicle Lifecycle

2007-04-16
2007-01-1721
Managing (minimizing and optimizing) the total mass of a vehicle is recognized as a critical task during the development of a new vehicle, as well as throughout its production lifecycle. This paper summarizes a literature review of, and investigation into, the strategies, methods and best practices for achieving low total mass in new vehicle programs, and/or mass reductions in existing production vehicle programs. Empirical and quantitative data and examples from the automotive manufacturers and suppliers are also provided in support of the material presented.
Technical Paper

Brake-by-Wire, Motivation and Engineering - GM Sequel

2006-10-08
2006-01-3194
Achieving optimum results and developing systems that are towards production intent is a challenge that the General Motors Sequel platform not only overcame, but also enhanced by providing an opportunity to achieve maximum integration of new technologies. Implementation of these new technologies during this project enabled us to understand the impact and rollout for future production programs to enhance performance and add features that will enable General Motors to make quantum leaps in the automotive industry. Presented are aspects, objectives and features of the Sequel's advanced Brake-By-Wire system as it migrates from concept towards production readiness. Also included in the paper are the objectives for system design; functional/performance requirements and the desired fault tolerance. The system design, component layout, control and electrical system architecture overviews are provided.
Technical Paper

Custom Real-Time Interface Blockset Development in Matlab/Simulink for On-Target Rapid Prototyping

2006-04-03
2006-01-0169
In GM R&D Powertrain/Engine Control Group, rapid prototyping controller (RPC) systems with Matlab/Simulink are used extensively to design, simulate and implement advanced engine control algorithms and models. However, those RPC systems use powerful microprocessors with large amounts of RAM contrary to engine control modules (ECM) in production vehicles. Therefore, a thorough analysis on the comparatively much more complicated algorithms and models cannot be performed during the research stage, since there are not enough tools to enable the smooth transition from Matlab/Simulink to the production type processor. The Real-Time Interface (RTI) Blockset for a production like microprocessor would close the transition gap between rapid prototyping controller systems and production type microprocessors by leveraging the power and popularity of Matlab/Simulink in control engineering world and automatic code generation tools.
X