Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Journal Article

Efficient Physics-Based System Level Thermal Management for Electric Drive Units using Reduced Order Modeling Techniques Assisted by Neural Networks

2023-04-11
2023-01-0448
Efficient thermal management is essential in high power density electric drive units (EDUs) due to limited space and working environment. Major heat sources in EDUs are from the inverter, motor and gearbox. System level thermal response prediction models comprising various components within the EDU are of interest from both product performance and software controls standpoint. A system level physics-based lumped parameter thermal network (LPTN) model is built in a one-dimensional (1D) framework using inputs from empirical, electromagnetic, three-dimensional conjugate fluid/heat transfer analysis and test data to predict the component temperature within the EDU. Empirical models were used to calculate heating due to efficiency loss from the gearbox. The thermal loses from the motor are estimated as outputs from electromagnetic simulations.
Journal Article

Integrated Analytical Approach for Electronic Locking Differential Systems

2023-04-11
2023-01-0449
Electronically locking differentials that have dog-clutches may not always have a smooth engagement. The duration of the engagements needs to be quantified, and the different types of engagement need to be qualified. The engagement time is dictated by both the mechanical and electrical sub-systems of the differential. Three different analytical methods were developed to simulate engagement. The first method uses Simulink to co-simulate the electromagnetic behavior of the actuator in ANSYS Maxwell, and the multibody dynamic behavior of the differential in MSC ADAMS. The second method simulates the mechanics of the differential in AMESim, where an equation for the electromagnetic force inside the actuator is integrated into the model. The third method leverages the former two methods by combining the MSC ADAMS multibody dynamic behavior with integrated equation for the electromagnetic force inside the actuator.
Technical Paper

Inverter Heat Sink Thermal Analysis of a Fully Integrated, 3-in-1 Electric Drive Unit (EDU)

2022-03-29
2022-01-0666
Over the years, requirements for an electric drive for traction applications have increased substantially in terms of efficiency, power density, packaging space and cost. Manufacturers have employed various strategies to achieve high efficiency and power dense solutions. One such strategy is to use a synergistic approach by combining typical EDU sub-components such as an inverter, a motor and a gearbox with a differential to form a fully integrated 3-in-1 solution. Electrical and thermal losses from such a system can be quite significant as it includes losses from the inverter, the motor and the gearbox. As a result, thermal performance is often a limiting factor in improving the packaging space and power density. To address thermal issues, an effective liquid cooling system must be employed that ensures sufficient heat dissipation from all of the EDU subcomponents and helps to reduce packaging space.
Technical Paper

Multiphase Flow and Thermal Analysis of Hollow-Shaft Cooling System for Motors of Electric Drive Units

2022-03-29
2022-01-0663
Automotive electric drive unit designs are often limited by installation space and the related environmental conditions. Electrical losses in various components of the motor such as stator, rotor and coils can be significant and as a result, the thermal design can become a bottle neck to improve power and torque density. In order to mitigate the thermal issue, an effective liquid cooling system is often employed that ensures sufficient heat dissipation from the motor and helps to reduce packaging size. Although both stator and rotor are cooled in a typical motor, this paper discusses a multiphase oil-air mixture analysis on a spinning hollow rotor and rotor shaft subjected to forced oil cooling. Three-dimensional computational fluid dynamics (CFD) conjugate heat transfer (CHT) simulations were carried out to investigate flow and heat transfer. The effect of centrifugal force, shaft RPM, density gradients and secondary flows were investigated.
Technical Paper

Numerical Investigation of Snow Accumulation on a Sensor Surface of Autonomous Vehicle

2020-04-14
2020-01-0953
Autonomous Vehicles (AVs) operate based on image information and 3D maps generated by sensors like cameras, LIDARs and RADARs. This information is processed by the on-board processing units to provide the right actuation signals to drive the vehicle. For safe operation, these sensors should provide continuous high quality data to the processing units without interruption in all driving conditions like dust, rain, snow and any other adverse driving conditions. Any contamination on the sensor surface/lens due to rain droplets, snow, and other debris would result in adverse impact to the quality of data provided for sensor fusion and this could result in error states for autonomous driving. In particular, snow is a common contamination condition during driving that might block a sensor surface or camera lens. Predicting and preventing snow accumulation over the sensor surface of an AV is important to overcome this challenge.
Technical Paper

Prevention of Snow Accretion on Camera Lenses of Autonomous Vehicles

2020-04-14
2020-01-0105
With the rapid development of artificial intelligence, the autonomous vehicles (AV) have attracted considerable attention in the automotive industry. However, different factors negatively impact the adoption of the AVs, delaying their successful commercialization. Accretion of atmospheric icing, especially wet snow, on AV sensors causes blockage on their lenses, making them prone to lose their sight, in turn, increasing potential chances of accidents. In this study, two different designs are proposed in order to prevent snow accretion on the lenses of AVs via air flow across the lens surface. In both designs, lenses made of plain glass and superhydrophobic coated glass surfaces are tested. While some researchers have shown promise of water repellency on superhydrophobic surfaces, more snow accretion is observed on the superhydrophobic surfaces, when compared to the plain glass lenses.
Technical Paper

Numerical Investigation of Wiper Drawback

2019-04-02
2019-01-0640
Windscreen wipers are an integral component of the windscreen cleaning systems of most vehicles, trains, cars, trucks, boats and some planes. Wipers are used to clear rain, snow, and dirt from the windscreen pushing the water from the wiped surface. Under certain conditions however, water which has been driven to the edge of the windscreen by the wiper can be drawn back into the driver’s field of view by aerodynamic forces introduced by the wiper motion. This is wiper drawback, an undesirable phenomenon as the water which is drawn back on to the windscreen can reduce driver’s vision and makes the wiper less effective. The phenomena of wiper drawback can be tested for in climatic tunnels using sprayer systems to wet the windscreen. However, these tests require a bespoke test property or prototype vehicle, which means that the tests are done fairly late in the development of the vehicle.
Technical Paper

Direct Aeroacoustics Predictions of Automotive HVAC Systems based on Lattice Boltzmann Method

2018-06-13
2018-01-1520
The demand for low noise level in vehicle cabin continues to rise lately. In particular, noise generated by eco-friendly cars such as hybrid and electric ones tends to become lower and lower. In this market environment, the noise contributions caused by HVAC systems are also increasing. Therefore, it becomes increasingly important to accurately predict noise generated by HVAC systems and analyze the noise sources and resolve the noise issue. In this study, direct acoustics prediction approach based on Lattice Boltzmann Method is applied to predict the flow-induced noise from HVAC systems including blower and ducts and find noise sources. In order to validate the simulation result, acoustics measurements are performed on HVAC systems in an anechoic room and the results are compared to each other. A new technique is applied to finding a noise source for a specific frequency and shows improved noise level through modifying the geometry related to noise sources detected by the simulation.
Technical Paper

Robust Optimization for Real World CO2 Reduction

2018-05-30
2018-37-0015
Ground transportation industry contributes to about 14% of the global CO2 emissions. Therefore, any effort in reducing global CO2 needs to include the design of cleaner and more energy efficient vehicles. Their design needs to be optimized for the real-world conditions. Using wind tunnels that can only reproduce idealized conditions quite often does not translate into real-world on-road CO2 reduction and improved energy efficiency. Several recent studies found that very rarely can the real-world environment be represented by turbulence-free conditions simulated in wind tunnels. The real-world conditions consist of both transversal flow velocity component (causing an oncoming yaw flow) as well as large-scale turbulent fluctuations, with length scales of up to many times the size of a vehicle. The study presented in this paper shows how the realistic wind affects the aerodynamics of the vehicle.
Journal Article

Value of Information for Comparing Dependent Repairable Assemblies and Systems

2018-04-03
2018-01-1103
This article presents an approach for comparing alternative repairable systems and calculating the value of information obtained by testing a specified number of such systems. More specifically, an approach is presented to determine the value of information that comes from field testing a specified number of systems in order to appropriately estimate the reliability metric associated with each of the respective repairable systems. Here the reliability of a repairable system will be measured by its failure rate. In support of the decision-making effort, the failure rate is translated into an expected utility based on a utility curve that represents the risk tolerance of the decision-maker. The algorithm calculates the change of the expected value of the decision with the sample size. The change in the value of the decision represents the value of information obtained from testing.
Technical Paper

Experimental and Numerical Study of the DrivAer Model Aerodynamics

2018-04-03
2018-01-0741
The DrivAer model, a detailed generic open source vehicle geometry, was introduced a few years ago and accepted widely from industry and academia for research in the field of automotive aerodynamics. This paper presents the evaluation of the aerodynamic properties of the 25% scale DrivAer model in both, CFD and in wind tunnel experiment. The results not only include aerodynamic drag and lift but also provide detailed investigations of the flow field around the vehicle. In addition to the available geometries of the DrivAer model, individual changes were introduced created by morphing the geometry of the baseline model. A good correlation between CFD and experiment could be achieved by using a CFD setup including the geometry of the wind tunnel test section. The results give insight into the aerodynamics of the DrivAer model and lead to a better understanding of the flow around the vehicle.
Technical Paper

Prediction of Charge Air Cooler Performance in a Racing Drive Cycle by 1D-3D Coupling

2018-04-03
2018-01-0781
Charge air temperature needs to be kept low for optimum engine operation. If charge air temperature is too high, engine performance reduction strategies are invoked to protect engines by limiting torque available to drivers. A 1D-3D coupling simulation methodology is developed to accurately predict internal air temperature after charge air cooler (CAC) during a racing drive cycle. The 3D flow simulation is used to characterize external air flow before CAC in steady-state cases. Then, interpolated 3D simulation results between steady operating points are used as transient external air boundary conditions in front of CAC in a 1D system model. 3D flow simulation is also used to predict internal flow rate ratio between CAC tubes. Finally, an 1D system model is used to predict time-trace of charge air temperature at CAC internal outlet during the racing drive cycle. The simulation results show that prediction errors are within 5 degrees for charge air temperature at internal outlets.
Technical Paper

Update on A-Pillar Overflow Simulation

2018-04-03
2018-01-0717
The management of surface water flows driven from the wind screen by the action of wipers and aerodynamic shear is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps for aesthetic, aeroacoustic and aerodynamic reasons increases the likelihood that surface water may be convected over the A-Pillar and onto the front side glass where it can compromise drivers’ vision. The ability to predict where and under which conditions the A-Pillar will be breached is important for making correct design decisions. The use of numerical simulation in this context is desirable, as experimental testing relies on the use of aerodynamics test properties which will not be fully representative, or late-stage prototypes, making it difficult and costly to correct issues. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing physical and numerical results for a test vehicle.
Technical Paper

Evaluation and Improvement of Greenhouse Wind Noise of a SGMW SUV using Simulation Driven Design

2018-04-03
2018-01-0737
At SAIC-GM-Wuling (SGMW) the greenhouse wind noise performance of their vehicles has gained a lot of attention in the development process. In order to evaluate and improve the noise quality of a newly developed SUV a digital simulation based process has been employed during the early stage of the design. CFD simulation was used for obtaining the flow induced exterior noise sources. Performance metrics for the quality were based on interior noise levels which were calculated from the exterior sources using a SEA approach for the noise transmission through the glass panels and propagation to the driver’s or passenger’s head space. Detailed analysis of the CFD results allowed to identify noise sources and related flow structures. Based on this analysis, design modifications were then applied and tested in a sequential iterative process. As a result an improvement of more than 2 dB in overall sound pressure level could be achieved.
Technical Paper

Random Vibration Analysis Using Quasi-Random Bootstrapping

2018-04-03
2018-01-1104
Reliability analysis of engineering structures such as bridges, airplanes, and cars require calculation of small failure probabilities. These probabilities can be calculated using standard Monte Carlo simulation, but this method is impractical for most real-life systems because of its high computational cost. Many studies have focused on reducing the computational cost of a reliability assessment. These include bootstrapping, Separable Monte Carlo, Importance Sampling, and the Combined Approximations. The computational cost can also be reduced using an efficient method for deterministic analysis such as the mode superposition, mode acceleration, and the combined acceleration method. This paper presents and demonstrates a method that uses a combination of Sobol quasi-random sequences and bootstrapping to reduce the number of function calls. The study demonstrates that the use of quasi-random numbers in conjunction bootstrapping reduces dramatically computational cost.
Technical Paper

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2018-04-03
2018-01-1287
Exhaust systems are a necessary solution to reduce combustion engine noise originating from flow fluctuations released at each firing cycle. However, exhaust systems also generate a back pressure detrimental for the engine efficiency. This back pressure must be controlled to guarantee optimal operating conditions for the engine. To satisfy both optimal operating conditions and optimal noise levels, the internal design of exhaust systems has become complex, often leading to the emergence of undesired noise generated by turbulent flow circulating inside a muffler. Associated details needed for the manufacturing process, such as brackets for the connection between parts, can interact with the flow, generating additional flow noise or whistles. To minimize the risks of undesirable noise, multiple exhaust designs must be assessed early to prevent the late detection of issues, when design and manufacturing process are frozen. However, designing via an experimental approach is challenging.
Technical Paper

Validation Studies for an Advanced Aerodynamic Development Process of Cab-Over Type Heavy Trucks

2017-10-25
2017-01-7009
The implementation of an advanced process for the aerodynamic development of cab-over type heavy trucks at China FAW Group Corporation (FAW) requires a rigorous validation of the tools employed in this process. The final objective of the aerodynamic optimization of a heavy truck is the reduction of the fuel consumption. The aerodynamic drag of a heavy truck contributes up to 50% of the overall resistance and thus fuel consumption. An accurate prediction of the aerodynamic drag under real world driving conditions is therefore very important. Tools used for the aerodynamic development of heavy trucks include Computational Fluid Dynamics (CFD), wind tunnels and track and road testing methods. CFD and wind tunnels are of particular importance in the early phase development.
Journal Article

Flow Noise Predictions for Single Cylinder Engine-Mounted Muffler Using a Lattice Boltzmann Based Method

2017-06-05
2017-01-1797
Exhaust systems including mufflers are commonly mounted on engines to reduce the firing cycle noise originating from the combustion process. However, mufflers also produce flow-induced self-noise, originating from the complex flow path throughout the muffler. As an engine prototype is not available in the early stages of a development program, it is challenging to assess the acoustic performance of the full system when only experiment is available. It is also difficult to pinpoint the design features of a muffler generating noise, as a portion of the noise is generated internally. Numerical approaches are a possible alternative. However, capturing non-linear dissipation mechanisms and thermal fluctuations of exhaust flows is challenging, while necessary to accurately predict flow noise.
Technical Paper

Vibro -Acoustic Response Analysis of Electric Motor

2017-06-05
2017-01-1850
The Environmental Protection Agency (EPA) requirement for 54.5mpg by 2025 to reduce greenhouse gases has pushed the industry to look for alternative fuels to run vehicles. Electricity is of those green energies that can help auto industry to achieve those strict requirements. However, the electric or hybrid-electric vehicles brought new challenges into science and engineering world including the Noise and Vibration issues which are usually tied up with both airborne and structural noises. The electromagnetic force plays a significant role in acoustic noise radiation in the electric motor which is an air-gap radial Maxwell force. This paper describes an innovative approach to model the physics of noise radiated by the electric motor.
X