Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Journal Article

Development of a Heavy-Duty Electric Vehicle Integration and Implementation (HEVII) Tool

2023-04-11
2023-01-0708
As demand for consumer electric vehicles (EVs) has drastically increased in recent years, manufacturers have been working to bring heavy-duty EVs to market to compete with Class 6-8 diesel-powered trucks. Many high-profile companies have committed to begin electrifying their fleet operations, but have yet to implement EVs at scale due to their limited range, long charging times, sparse charging infrastructure, and lack of data from in-use operation. Thus far, EVs have been disproportionately implemented by larger fleets with more resources. To aid fleet operators, it is imperative to develop tools to evaluate the electrification potential of heavy-duty fleets. However, commercially available tools, designed mostly for light-duty vehicles, are inadequate for making electrification recommendations tailored to a fleet of heavy-duty vehicles.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Journal Article

Safe Operations at Roadway Junctions - Design Principles from Automated Guideway Transit

2021-06-16
2021-01-1004
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage.
Technical Paper

Numerical Evaluation of Spark Assisted Cold Idle Operation in a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0410
Gasoline compression ignition (GCI) has been shown to offer benefits in the NOx-soot tradeoff over conventional diesel combustion while still achieving high fuel efficiency. However, due to gasoline’s low reactivity, it is challenging for GCI to attain robust ignition and stable combustion under cold operating conditions. Building on previous work to evaluate glow plug-assisted GCI combustion at cold idle, this work evaluates the use of a spark plug to assist combustion. The closed-cycle 3-D CFD model was validated against GCI test results at a compression ratio of 17.3 during extended cold idle operation under laboratory-controlled conditions. A market representative, ethanol-free, gasoline (RON92, E0) was used in both the experiment and the numerical analysis. Spark-assisted simulations were performed by incorporating an ignition model with the spark energy required for stable combustion at cold start.
Technical Paper

Microsimulation-Based Evaluation of an Eco-Approach Strategy for Automated Vehicles Using Vehicle-in-the-Loop

2021-04-06
2021-01-0112
Connected and automated technologies poised to change the way vehicles operate are starting to enter the mainstream market. Methods to accurately evaluate these technologies, in particular for their impact on safety and energy, are complex due to the influence of static and environmental factors, such as road environment and traffic scenarios. Therefore, it is important to develop modeling and testing frameworks that can support the development of complex vehicle functionalities in a realistic environment. Microscopic traffic simulations have been increasingly used to assess the performance of connected and automated vehicle technologies in traffic networks. In this paper, we propose and apply an evaluation method based on a combination of microscopic traffic simulation (AIMSUN) and a chassis dynamometer-based vehicle-in-the-loop environment, developed at Argonne National Laboratory.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Technical Paper

Powertrain Choices for Emerging Engine Technologies

2020-04-14
2020-01-0440
The peak efficiency of modern spark ignited engines varies from 36% to 40% depending on the exact technology utilized. Most engines can achieve this peak efficiency for a limited operating region. Multi-speed transmissions allow the engine to operate closer to its most efficient operating regions for more significant portions of operation. In the case of hybrid powertrains, electric machines help in improving engine efficiency by adjusting operating speed and load. Engine shutdown during idle events and low loads is another avenue for improving the overall efficiency. The choice of the ideal powertrain and component sizes depends on the engine characteristics, drive cycles and vehicle technical requirements. This study examines what type of powertrains will be suitable for more efficient engines that are likely to be available in the near future. Some of the new technologies achieve higher efficiency with a trade off on power or by accepting a more restrictive operating region.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Analysis and Model Validation of the Toyota Prius Prime

2019-04-02
2019-01-0369
The Toyota Prius Prime is a new generation of Toyota Prius plug-in hybrid electric vehicle, the electric drive range of which is 25 miles. This version is improved from the previous version by the addition of a one-way clutch between the engine and the planetary gear-set, which enables the generator to add electric propulsive force. The vehicle was analyzed, developed and validated based on test data from Argonne National Laboratory’s Advanced Powertrain Research Facility, where chassis dynamometer set temperature can be controlled in a thermal chamber. First, we analyzed and developed components such as engine, battery, motors, wheels and chassis, including thermal aspects based on test data. By developing models considering thermal aspects, it is possible to simulate the vehicle driving not only in normal temperatures but also in hot, cold, or warmed-up conditions.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Range Extension Opportunities While Heating a Battery Electric Vehicle

2018-04-03
2018-01-0066
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination [1]. The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 °C to −18 °C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Energy Efficiency Benefits of Active Transmission Warm-up under Real-World Operating Conditions

2018-04-03
2018-01-0385
Active transmission warm-up systems are used by automotive manufacturers in effort to increase powertrain efficiency and decrease fuel consumption. These systems vary from one manufacturer to another, but their main goal is to capture waste heat from the powertrain and accelerate transmission fluid warm-up. In this study, the fuel consumption benefit from the active transmission warm-up system in a 2013 Ford Taurus 2.0 L EcoBoost is quantified on a cold start UDDS drive cycle at ambient temperatures of −7 and 21 °C. In addition to this, the fuel consumption and greenhouse gas emissions impact on the EPA 5-cycle test, hot start HWY drive cycle, and a cold start, constant speed drive cycle is also quantified. An extra effort to determine the maximum possible benefit of active transmission warm-up is made by modifying the test vehicle to provide external heating to pre-heat and further accelerate the transmission fluid warm-up.
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

2017-03-28
2017-01-0157
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Technical Paper

Control Analysis and Model Validation for BMW i3 Range Extender

2017-03-28
2017-01-1152
The control analysis and model validation of a 2014 BMW i3-Range Extender (REX) was conducted based on the test data in this study. The vehicle testing was performed on a chassis dynamometer set within a thermal chamber at the Advanced Powertrain Research Facility at Argonne National Laboratory. The BMW i3-REX is a series-type plug-in hybrid range extended vehicle which consists of a 0.65L in-line 2-cylinder range-extending engine with a 26.6kW generator, 125kW permanent magnet synchronous AC motor, and 18.8kWh lithium-ion battery. Both component and vehicle model including thermal aspects, were developed based on the test data. For example, the engine fuel consumption rate, battery resistance, or cabin HVAC energy consumption are affected by the temperature. Second, the vehicle-level control strategy was analyzed at normal temperature conditions (22°C ambient temperature). The analysis focuses on the engine on/off strategy, battery SOC balancing, and engine operating conditions.
Technical Paper

Long Term Impact of Vehicle Electrification on Vehicle Weight and Cost Breakdown

2017-03-28
2017-01-1174
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
X