Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Engine Operating Conditions, Fuel Property Effects, and Associated Fuel–Wall Interaction Dependencies of Stochastic Preignition

2023-10-31
2023-01-1615
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points.
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Technical Paper

Effect of Split-Injection Strategies on Engine Performance and Emissions under Cold-Start Operation

2023-04-11
2023-01-0236
The recently concluded partnership for advancing combustion engines (PACE) was a US Department of Energy consortium involving multiple national laboratories focused on addressing key efficiency and emission barriers in light-duty engines. Generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior was a major pillar in this program. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon, and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster three-way catalyst light-off, and engine out emissions during that period. In this study, engine performance, emissions, and catalyst warmup potential were monitored while the engine was operated using a single direct injection (baseline case) as well as a two-way-equal-split direct injection strategy.
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Impact of Biodiesel, Renewable Diesel, 1-Octanol, Dibutoxymethane, n-Undecane, Hexyl hexanoate and 2-Nonanone with Infrastructure Plastics as Blends with Diesel

2022-03-29
2022-01-0487
In this study the volume and hardness were measured for thermoplastics and thermosetting resins with diesel containing up to 30% of the following blend stocks: biodiesel, renewable diesel, n-undecane, dibutoxymethane, 1-octanol, hexyl hexanoate, and 2-nonanone. Thermoplastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), nylons, acetals, polyetherimide (PEI), polyetheretherketone (PEEK), a PET co-polymer, polyphthalamides (PPAs), polyarylamide (PARA) and ethylene tetrafluoroethylene (ETFE). Three thermosetting resins were also evaluated. The material specimens were exposed to the test fuels under ambient conditions for 16 weeks.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Journal Article

Fuel Effects on Advanced Compression Ignition Load Limits

2021-09-21
2021-01-1172
In order to maximize the efficiency of light-duty gasoline engines, the Co-Optimization of Fuels and Engines (Co-Optima) initiative from the U.S. Department of Energy is investigating multi-mode combustion strategies. Multi-mode combustion can be describe as using conventional spark-ignited combustion at high loads, and at the part-load operating conditions, various advanced compression ignition (ACI) strategies are being investigated to increase efficiency. Of particular interest to the Co-Optima initiative is the extent to which optimal fuel properties and compositions can enable higher efficiency ACI combustion over larger portions of the operating map. Extending the speed-load range of these ACI modes can enable greater part-load efficiency improvements for multi-mode combustion strategies.
Journal Article

Performance Comparison of LPG and Gasoline in an Engine Configured for EGR-Loop Catalytic Reforming

2021-09-21
2021-01-1158
In prior work, the EGR loop catalytic reforming strategy developed by ORNL has been shown to provide a relative brake engine efficiency increase of more than 6% by minimizing the thermodynamic expense of the reforming processes, and in some cases achieving thermochemical recuperation (TCR), a form of waste heat recovery where waste heat is converted to usable chemical energy. In doing so, the EGR dilution limit was extended beyond 35% under stoichiometric conditions. In this investigation, a Microlith®-based metal-supported reforming catalyst (developed by Precision Combustion, Inc. (PCI)) was used to reform the parent fuel in a thermodynamically efficient manner into products rich in H2 and CO. We were able to expand the speed and load ranges relative to previous investigations: from 1,500 to 2,500 rpm, and from 2 to 14 bar break mean effective pressure (BMEP).
Technical Paper

Numerical Investigation of the Impact of Fuel Injection Strategies on Combustion and Performance of a Gasoline Compression Ignition Engine

2021-04-06
2021-01-0404
Gasoline compression ignition is a promising strategy to achieve high thermal efficiency and low emissions with limited modifications to the conventional diesel engine hardware. It is a partially premixed concept which derives its superiority from higher volatility and longer ignition delay of gasoline-like fuels combined with higher compression ratio typical of diesel engines. The present study investigates the combustion process in a gasoline compression ignition engine using computational fluid dynamics. Simulations are carried out on a single cylinder of a multi cylinder heavy-duty compression ignition engine which operates at a compression ratio of 17:1 and an engine speed of 1038 rev/min. In this study, a late fuel injection strategy is used because it is less sensitive to combustion kinetics compared to early injection strategies, which in turn is a better choice to assess the performance of the spray model.
Technical Paper

In Situ Laser Induced Florescence Measurements of Fuel Dilution from Low Load to Stochastic Pre Ignition Prone Conditions

2021-04-06
2021-01-0489
This work employs a novel laser induced fluorescence (LIF) diagnostic to measure fuel dilution in a running single cylinder research engine operated at stochastic pre ignition (SPI) and non-SPI prone conditions. Measurements of LIF based fuel dilution are quantified over a range of engine loads and fuel injection timings for two fuels. The in situ LIF measurements of fuel/lubricant interactions illustrate regions of increased fuel dilution from fuel-wall interactions and is believed to be a fundamental underpinning to generating top ring zone liquid conditions conducive to SPI. A novel level of dye doped in the fuel, between 50 to 500 ppm was used as the fluorescence source, at engine operating speed of 2000r/min from 5 to 18 bar of IMEPg injection timings was swept for two fuels of varying volatility.
Technical Paper

Dilute Combustion Control Using Spiking Neural Networks

2021-04-06
2021-01-0534
Dilute combustion with exhaust gas recirculation (EGR) in spark-ignition engines presents a cost-effective method for achieving higher levels of engine efficiency. At high levels of EGR, however, cycle-to-cycle variability (CCV) of the combustion process is exacerbated by sporadic occurrences of misfires and partial burns. Previous studies have shown that temporal deterministic patterns emerge at such conditions and certain combustion cycles have a significant influence over future events. Due to the complexity of the combustion process and the nature of CCV, harnessing all the deterministic information for control purposes has remained challenging even with physics based 0-D, 1-D, and high-fidelity computational fluid dynamics (CFD) models. In this study, we present a data-driven approach to optimize the combustion process by controlling CCV adjusting the cycle-to-cycle fuel injection quantity.
Technical Paper

Microsimulation-Based Evaluation of an Eco-Approach Strategy for Automated Vehicles Using Vehicle-in-the-Loop

2021-04-06
2021-01-0112
Connected and automated technologies poised to change the way vehicles operate are starting to enter the mainstream market. Methods to accurately evaluate these technologies, in particular for their impact on safety and energy, are complex due to the influence of static and environmental factors, such as road environment and traffic scenarios. Therefore, it is important to develop modeling and testing frameworks that can support the development of complex vehicle functionalities in a realistic environment. Microscopic traffic simulations have been increasingly used to assess the performance of connected and automated vehicle technologies in traffic networks. In this paper, we propose and apply an evaluation method based on a combination of microscopic traffic simulation (AIMSUN) and a chassis dynamometer-based vehicle-in-the-loop environment, developed at Argonne National Laboratory.
Journal Article

Accelerating the Generation of Static Coupling Injection Maps Using a Data-Driven Emulator

2021-04-06
2021-01-0550
Accurate modeling of the internal flow and spray characteristics in fuel injectors is a critical aspect of direct injection engine design. However, such high-fidelity computational fluid dynamics (CFD) models are often computationally expensive due to the requirement of resolving fine temporal and spatial scales. This paper addresses the computational bottleneck issue by proposing a machine learning-based emulator framework, which learns efficient surrogate models for spatiotemporal flow distributions relevant for static coupling injection maps, namely total void fraction, velocity, and mass, within a design space of interest. Different design points involving variations of needle lift, fuel viscosity, and level of non-condensable gas in the fuel were explored in this study. An interpretable Bayesian learning strategy was employed to understand the effect of the design parameters on the void fraction fields at the exit of the injector orifice.
Journal Article

Towards Developing an Unleaded High Octane Test Procedure (RON>100) Using Toluene Standardization Fuels (TSF)

2020-09-15
2020-01-2040
An increase in spark-ignition engine efficiency can be gained by increasing the engine compression ratio, which requires fuels with higher knock resistance. Oxygenated fuel components, such as methanol, ethanol, isopropanol, or iso-butanol, all have a Research Octane Number (RON) higher than 100. The octane numbers (ON) of fuels are rated on the CFR F1/F2 engine by comparing the knock intensity of a sample fuel relative to that of bracketing primary reference fuels (PRF). The PRFs are a binary blend of iso-octane, which is defined to an ON of 100, and n-heptane, which represents an ON of 0. Above 100 ON, the PRF scale continues by adding diluted tetraethyl lead (TEL) to iso-octane. However, TEL is banned from use in commercial gasoline because of its toxicity. The ASTM octane number test methods have a “Fit for Use” test that validate the CFR engine’s compliance with the octane testing method by verifying the defined ON of toluene standardization fuels (TSF).
Technical Paper

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

2020-04-14
2020-01-0616
A 500-hour test cycle has been used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the original diesel based hardware design were optimized in order to accommodate an opposed-piston, two-stroke engine application and also to mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved and no physical damage was observed in the low-pressure components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle spray holes and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion.
X