Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Technical Overview of Particulate Exhaust Emissions in the Post-RDE Era

2022-08-30
2022-01-1021
The subject of exhaust particulate emissions from road vehicles continues to gain attention and further, more stringent legislative demands are expected in this area. While the European Union has been at the forefront in recent decades, other jurisdictions are making progress towards more comprehensive control and limitation of exhaust particulate. This technical overview examines past, current and likely future (Euro 7) legislative requirements and also presents sample results from a range of vehicle types, in order to make comparisons and discuss the impact of expected regulatory updates. The impacts of powertrain trends, including hybridization, on exhaust particulate emissions and their control are briefly analyzed. Regulatory trends including the intention to move the lower boundary of the size range considered from 23 nm to 10 nm and the elimination of fuel- and technology-specific limits on particulate emissions are discussed and their implications analyzed.
Technical Paper

The Formation of Ammonia in Three-Way Catalysts Fitted to Spark Ignition Engines - Mechanisms and Magnitudes

2022-08-30
2022-01-1026
Exhaust gas aftertreatment systems can, under certain conditions, create undesired chemical species as a result of their elimination reactions. A prime example of this is ammonia (NH3), which is not formed in the combustion reaction, but which can be formed within a three-way catalyst (TWC) when physicochemical conditions permit. The elimination of NOx in the TWC thus sometimes comes at the cost of significant emissions of NH3. Ammonia is a pollutant and a reactive nitrogen compound (RNC) and NH3 emissions should be analyzed in this context, alongside other RNC species. Examination of the literature on the subject published over the past two decades shows that ammonia, a species which is currently not subject to systematic emissions requirements for road vehicles in any market, is often identified as forming the majority of the RNC emissions under a range of operating conditions.
Technical Paper

Exhaust Emissions from Two Euro 6d-Compliant Plug-In Hybrid Vehicles: Laboratory and On-Road Testing

2021-04-06
2021-01-0605
This paper discusses the legislative situation regarding type approval of plug-in hybrid vehicles (also known as off-vehicle charging hybrid-electric vehicles, OVC-HEV) in the range of exhaust emissions and fuel consumption. A range of tests were conducted on two Euro 6d-complaint OVC-HEVs to quantify emissions. Procedures were based on EU legislative requirements. For laboratory (chassis dyno) testing, two different test cycles and three different ambient temperatures were used for testing. Furthermore, in some cases additional measurements were performed, including measurement of emissions of particulate matter and continuous analysis of regulated and unregulated pollutants in undiluted exhaust. Consumption of electrical energy was also monitored. On-road testing was conducted on the test vehicle tested on the chassis dyno in the tests mentioned above, as well as on a second OVC-HEV test vehicle.
Technical Paper

Exhaust Emissions from an SUV with a Spark-Ignition Engine Tested Using EU and US Legislative Driving Cycles and EU RDE Procedures

2021-04-06
2021-01-0616
Despite an overall trend towards harmonization in vehicle regulations, regional differences persist in the area of exhaust emissions and fuel economy. The test procedure employed can exert a significant impact on the results obtained. In this paper, the EU and US type approval procedures for light duty vehicles are briefly compared and results obtained from several types of test procedure are presented. Specifically, emissions tests were performed on a single SUV which met US Tier III emissions limits. The vehicle featured a conventional, naturally aspirated spark ignition engine with indirect fuel injection and an aftertreatment system consisting of three-way catalysts with no dedicated particulate filtration device. The vehicle’s engine displacement, total mass and power-to-mass ratio were relatively representative of the upper end of the US market, but represented an outlying vehicle in terms of the characteristics of the EU fleet.
Technical Paper

The Variation of Functional Characteristics of a Euro VI Selective Catalytic Reduction Reactor after Ageing

2020-09-15
2020-01-2205
The selective catalytic reduction (SCR) of nitrogen oxides by ammonia is commonly applied as a method of exhaust aftertreatment for lean burn compression ignition (CI) engines. The catalytic reactor of an SCR system, like all catalytic emission control devices, is susceptible to partial deactivation as its operating time progresses. Long-term exposure of an SCR reactor to exhaust gas of fluctuating temperature and composition results in variations of the characteristics of its catalytically active layer. The aim of this study was to observe and investigate the variation of parameters characterizing the SCR reactor as a result of its ageing. Attention was paid to changes in ammonia storage capacity, selectivity of chemical reactions and maximum achievable NOx conversion efficiency. The experimental setup was a heavy duty (HD) Euro VI-compliant engine and its aftertreatment system (ATS). The setup was installed on a transient engine dyno instrumented with emission measurement devices.
Technical Paper

An Analysis of Emissions at Low Ambient Temperature from Diesel Passenger Cars Using the WLTP Test Procedure

2020-09-15
2020-01-2186
The aim of this paper is to analyse the results of regulated and unregulated emissions and carbon dioxide (CO2) emissions of passenger cars equipped with compression-ignition engines that meet the emission Euro 6d standards. Both test vehicles featured selective catalytic reduction (SCR) systems for control of oxides of nitrogen (NOx) and one vehicle also featured a passive NOx absorber (PNA). Research was performed using the current European Union exhaust emission test methods for passenger cars (Worldwide harmonized Light vehicles Test Procedures (WLTP)). Emission testing was performed on a chassis dynamometer, within a climatic chamber, at two different ambient temperatures: 23°C (i.e. Type I test) and -7°C (known as a Type VI test - currently not required for this engine type according to EU legislative requirements).
Technical Paper

A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car

2020-09-15
2020-01-2217
Non-plugin hybrids represent a technology with the capability to significantly reduce fuel consumption (FC), without any changes to refuelling infrastructure. The EU market share for this vehicle type in the passenger car segment was 3% in 2018 and this powertrain type remains of interest as an option to meet the European Union (EU) fleet average CO2 limits. EU legislative procedures require emissions limits to be met during the chassis dynamometer test and in the on-road real driving emissions (RDE) test, while official CO2/FC figures are quantified via the laboratory chassis dynamometer test only. This study employed both legislative test procedures and compared the results. Laboratory (chassis) dynamometer testing was conducted using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). On-road testing was carried out in accordance with RDE requirements, measuring the concentration of regulated gaseous emissions and the number of solid particles (PN).
Technical Paper

Accelerated Ageing Method of Three Way Catalyst Run on Test Bed with Emission Performance and Oxygen Storage Capacity Evaluation

2020-09-15
2020-01-2189
The aim of this paper was to describe a method of accelerated three way catalytic converter (TWC) ageing performed on the engine test bed for European On Board Diagnostics (EOBD) monitoring purposes and screening of different catalysts solutions. To accelerate the catalyst ageing process, the exhaust gas temperature was elevated to a range 1000 - 1200°C, which is typical for an ageing cycle performed using ovens. Catalyst emissions performance was checked at new condition (after degreening) and subsequently at predefined ageing intervals, based on the oxygen storage capacity (OSC) evaluation. The emission tests were performed in the laboratory on the chassis dynamometer using legislative cycles. The accelerated ageing method was found to be of use for verifying the EOBD functionality under vehicle operation with a degraded catalyst substrate.
X