Refine Your Search

Topic

Search Results

Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames

2017-10-08
2017-01-2396
Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

Design Approach and Dimensionless Analysis of a Differential Driving Hydraulic Free Piston Engine

2016-09-27
2016-01-8091
A new method for driving the hydraulic free piston engine is proposed. This method achieves the compression stroke automatically rather than special recovery system. Principle of hydraulic differential drive free-piston engine is analyzed and the control strategy of this novel hydraulic driving engine is also introduced. Then energy balance method is used to design the main parameters of the novel engine. High pressure and secondary high pressure of the hydraulic system are constrained by the combustion parameters and therefore parameters are analyzed. In order to verify the effectiveness of energy balance method, the mathematical model is established based on the piston force analysis and engine working principle. The transient results of dynamics are obtained through simulation. In addition, the effectiveness of the simulation is proofed by dimensionless analysis. It indicates that energy balance method realizes the basic performance of hydraulic free piston engine.
Technical Paper

Three-Dimensional CFD Analysis of Semi-Direct Injection Hydraulic Free Piston Engine

2016-04-05
2016-01-1018
In this paper, a new method for the driving of the hydraulic free piston engine (HFPE) is proposed. Hydraulic differential drive achieves the compression stroke automatically rather than special recovery system, which has a great influence on the engine dynamic performance. The purpose of this paper is to solve the key operation and control problems for HFPE to commix fuel with air. HFPE adopts two-stroke loop-scavenging and semi-direct injection. The semi-direct injection nozzle is located in the liner wall inside the main intake port, with the axes oriented towards the piston at the Bottom Dead Center (BDC). Different scavenging pressures and injection angles result in different impacts on the mixture of fuel and air in the cylinder. This study analyzes the changes of the combustion heat release rate by simulation.
Technical Paper

Combustion Characteristics of Acetone, Butanol, and Ethanol (ABE) Blended with Diesel in a Compression-Ignition Engine

2016-04-05
2016-01-0884
Acetone-Butanol-Ethanol (ABE) is an intermediate product in the ABE fermentation process for producing bio-butanol. As an additive for diesel, it has been shown to improve spray evaporation, improve fuel atomization, enhance air-fuel mixing, and enhance combustion as a whole. The typical compositions of ABE are in a volumetric ratio of 3:6:1 or 6:3:1. From previous studies done in a constant volume chamber, it was observed that the presence of additional acetone in the blend caused advancement in the combustion phasing, but too much acetone content led to an increase in soot emission during combustion. The objective of this research was to investigate the combustion of these mixtures in a diesel engine. The experiments were conducted in an AVL 5402 single-cylinder diesel engine at different speeds and different loads to study component effects on the various engine conditions. The fuels tested in these experiments were D100, ABE(3:6:1)10, ABE(3:6:1)20, ABE(6:3:1)10, and ABE(6:3:1)20.
Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Combustion Characteristics of Diesel Spray with Temporally-Splitting High-Pressure Injection

2015-11-17
2015-32-0825
The effect of temporally-splitting high pressure injection on Diesel spray combustion and soot formation processes was studied by using the high-speed video camera. The spray was injected by the single-hole nozzle with a hole diameter of 0.11mm into the high-pressure and high-temperature constant volume vessel. The free spray and the spray impingement on the two dimensional (2D) piston cavity wall were examined. Injection pressures of 100 and 160 MPa for the single injection and 160 MPa for the split injection were selected. The flame structure and soot formation process were examined by using the two-color pyrometry. The soot generated in the flame under the split injection under 160 MPa becomes higher than that of the single injection under 160 MPa.
Technical Paper

Simulation Study of Hydraulic Differential Drive Free-piston Engine

2015-04-14
2015-01-1300
The hydraulic free piston engine is a complex mechanical-electro-liquid system, in order to simplify the complex system of the single hydraulic free piston engine, a new method for the driving of hydraulic free piston engine is proposed. Hydraulic differential drive achieves the compression stroke automatically rather than special recovery system. The structure and principle of hydraulic differential drive free-piston engine are analyzed and the mathematical model is established based on the piston force analysis and the hydraulic system working principle. In addition, the control strategy of this novel hydraulic driving engine is also introduced. Finally, the transient results of dynamics are obtained through simulation. Then we compare our results to the ones from the hydraulic free piston engine made by the company Innas.
Technical Paper

Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline

2015-04-14
2015-01-1082
As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
Technical Paper

Life Prediction of Shift Valve for Wet Shift Clutch under Abrasive Wear

2015-04-14
2015-01-0682
In the present paper a degradation assessment and life prediction method has been proposed for electro-hydraulic shift valve applied to control wet shift clutch in Power-shift steering transmission (PSST). Unlike traditional analysis of contaminant sensitivity, our work is motivated by the failure mechanisms of abrasive wear with a mathematic model. Plowing process included in abrasion will consecutively increase the roughness of mating surfaces and thereby enlarge the clearance space for leaking more fluid. It is an overwhelming wear mechanism in the degradation of shift valve within serious-contaminated fluid. Herein a mathematic model for assessment and prediction is proposed by considering particle morphology and abrasion theory. Such model has been verified for its applicability and accuracy through comparison between theoretical and experimental results. Assuming the proposed model to be general, valve wearing behavior in any hydraulic system can be simulated.
Technical Paper

Experimental Study of B20 Combustion and Emission Characteristics under Several EGR Conditions

2015-04-14
2015-01-1078
It is found that biodiesel has a great potential to reduce the nitrogen oxides (NOx) and soot emissions simultaneously in low temperature combustion (LTC) mode. The objective of this study is to investigate the combustion and emission characteristics of 20% biodiesel blend diesel fuel (B20) under several exhaust gas recirculation (EGR) conditions for LTC application. An experimental investigation of B20 was conducted on a four-stroke common rail direct injection diesel engine at 2000rpm and 25% load condition. The EGR ratio was adjusted from 10% to 66%, and the injection pressure was tuned from 100MPa to 140MPa. The result showed that B20 generated less soot emission than conventional diesel with increasing EGR ratio, especially when the EGR ratio was beyond 30%. Soot emission increased with increasing EGR ratio up to 50% EGR, after which there is a steep decrease in particular matter (PM).
Technical Paper

Effect of Piston Dynamic on the Working Processes of an Opposed-Piston Two-Stroke Folded-Cranktrain Engine

2014-04-01
2014-01-1628
An opposed-piston two-stroke folded-cranktrain diesel engine was studied in this paper. In order to achieve asymmetric scavenging, asymmetric angle between two crank throws were designed. However asymmetric crank-throw angle has direct effect on the piston dynamic, which affects engine performance. This paper investigated the characteristics of the piston dynamic on an opposed-piston two-stroke folded-cranktrain diesel engine; effects of the asymmetric angle on the piston displacement, velocity and acceleration were analyzed; further researches were done to studied the effect of piston dynamic on the gas exchange performance and in-cylinder performance. The results show that, larger asymmetric angle is positive for the scavenging efficiency but negative for combustion.
X