Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Journal Article

Body Join Drilling for One-Up-Assembly

2013-09-17
2013-01-2296
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment.
Journal Article

Augmented Reality and Other Visualization Technologies for Manufacturing in Boeing

2011-10-18
2011-01-2656
The Efficient Assembly, Integration & Test (EAIT) team at Boeing Research & Technology, Boeing's central technology organization, is working on multiple implementations of Augmented Reality to aid assembly at the satellite production facility in El Segundo, CA. This presentation will discuss our work to bring an Augmented Reality tool to the shop floor, integrating product design and manufacturing techniques into a synergistic backbone and how this approach can support the delivery of engineering design intent on the shop floor. The team is developing a system to bring designer's 3D CAD models to the technicians on the shop floor, and spatially register them to live camera views of production hardware. We will discuss our work in evaluating multiple motion captures systems, how we integrated a Vicon system with Augmented Reality software, and our development of a user interface allowing technicians to manipulate the graphical display.
Journal Article

Technical Improvements to the ASAT2 Boeing 777 Spar Assembly Cell

2011-10-18
2011-01-2707
Electroimpact and Boeing are improving the efficiency and reliability of the Boeing 777 spar assembly process. In 1992, the Boeing 777 spar shop installed Giddings and Lewis spar machines with Electroimpact Inc. EMR(1) (Electromagnetic Riveting) technology. In 2011, Electroimpact Inc. began replacing the original spar machines with next generation assembly machines. The new carriages incorporate a number of technical improvements and advancements over the current system. These technical advancements have facilitated a 50% increase in average cycle rate, as well as improvements to overall process efficiency, reliability and maintainability. Boeing and Electroimpact have focused on several key technology areas as opportunities for significant technical improvements.
Technical Paper

Drilling Mixed Stack Materials for the BOEING 787

2010-09-28
2010-01-1867
The new combinations such as composites and titanium that are being used on today's new airplanes are proving to be very challenging when drilling holes during manufacturing and assembly operations. Gone are the days of hand drilling with high speed steel drills through soft aluminum structure, after which aluminum rivets would be swaged into those holes with very generous tolerances. The drilling processes today need to use cutter materials hard enough and tough enough to cut through hard metals such as titanium, yet be sharp enough to resistant abrasion and maintain size when drilling through composites. There is a constant search for better cutters and drills that can drill a greater number of holes. The cost of materials used in today's aircraft is much higher. The cutting tools are more expensive and the hole tolerances are much tighter.
Technical Paper

Recommendations for Clothing Systems for Advanced Missions

2006-07-17
2006-01-2248
Clothing can constitute a major logistical problem for advanced missions. Current and historical clothing systems for space missions have been assessed, as has the viability of using a washing machine to clean (recycle) clothing. Modern fabrics can reduce the mass and increase the functionality of clothing, including reducing the risk of fire, for all missions. The increased cost of acquisition of even high tech commercial off the shelf (COTS) items is trivial compared to the cost of shipping the clothing and disposing of it as trash. Washing can be cost effective when water is recycled efficiently, provided the mission is long enough. The breakeven time for clothes-washing depends on the specifics of the mission, particularly the mass equivalencies of infrastructure, but is of the order of weeks rather than years.
Technical Paper

Evaluation of the EMR for Swaging Collars on Advanced Composite Laminates

2005-10-03
2005-01-3299
The Boeing 787 Dreamliner will be the most fuel-efficient airliner in the world when it enters service in 2008. To help achieve this, Boeing will utilize state-of-the-art carbon fiber for primary structures. Advanced manufacturing techniques and processes will be used in the assembly of large composite structures. Electroimpact has proposed a system utilizing the low recoil Low Voltage Electromagnetic Riveter (LVER) to drill and install bolts. A test program was initiated between Boeing Materials Process and Engineering (MP&E) and Electroimpact to validate the LVER process for swaging titanium collars on titanium pins in composite material. This paper details the results of these tests.
Technical Paper

A Selected Operational History of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2004-07-19
2004-01-2470
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001.
Technical Paper

Clothing Systems for Long Duration Space Missions

2004-07-19
2004-01-2580
Clothing accounts for a surprisingly large quantity of resupply and waste on the International Space Station (ISS), of the order of 14% of the equivalent system mass (ESM). Efforts are underway in the ISS program to reduce this, but much greater changes are likely to be possible and justifiable for long duration missions beyond low Earth orbit (LEO). Two approaches are being assessed for long duration missions: to reduce the mass of the wardrobe through use of lighter fabrics, and to clean clothing on board for reuse. Through good design including use of modern fabrics, a lighter weight wardrobe is expected to be feasible. Collateral benefits should include greater user comfort and reduced lint generation. A wide variety of approaches to cleaning is possible. The initial evaluation was made based on a terrestrial water-based washer and dryer system, as this represents the greatest experience base.
Technical Paper

Comparison of Waste Systems

2004-07-19
2004-01-2581
A summary of waste processes and waste process data is presented in the context of mission equivalent system mass. Storage, size reduction, drying, aerobic and anaerobic biodegradation, chemical oxidation, pyrolysis, and post processing are evaluated in the context of probable long-duration missions beyond LEO, and the probable quantities and types of wastes and of the other on-board systems. An assessment of the waste systems described in the ALS Reference Missions Document is presented, and rationale for some changes to these systems is provided.
Technical Paper

ESM History, Capability, and Methods

2003-07-07
2003-01-2630
Equivalent system mass (ESM) was defined in 1997 as an integral part of the Advanced Life Support project metric. It is particularly suited to comparing technologies that differ in mass, volume, power, cooling, and crew time during the early phases of a program. In principle, ESM can also be used to compare technologies that differ in other parameters. In practice, the necessary data is generally not available, and this limits this application. ESM has proven to be a useful tool. Like any tool, its strengths and weaknesses must be understood. This paper documents the history, capability and methods used in connection with ESM.
X