Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Application of Synthetic Jets to Enhance the Performance of a Vertical Tail

2013-09-17
2013-01-2284
The performance enhancement of a vertical tail provided by aerodynamic flow control could allow for the size of the tail to be reduced while maintaining similar control authority. Decreasing tail size would create a reduction in weight, drag, and fuel costs of the airplane. The application of synthetic jet actuators on improving the performance of the vertical tail was investigated by conducting experiments on 1/9th and 1/19th scale wind tunnel models (relative to a Boeing 767 tail) at Reynolds numbers of 700,000 and 350,000, respectively. Finite-span synthetic jets were placed slightly upstream of the rudder hinge-line in an attempt to reduce or even eliminate the flow separation that commences over the rudder when it was deflected to high angles. Global force measurements on the 1/9th scale model showed that the flow control is capable of increasing side force by a maximum of 0.11 (19%). The momentum coefficient that created this change was relatively small (Cμ = 0.124%).
Journal Article

Augmented Reality and Other Visualization Technologies for Manufacturing in Boeing

2011-10-18
2011-01-2656
The Efficient Assembly, Integration & Test (EAIT) team at Boeing Research & Technology, Boeing's central technology organization, is working on multiple implementations of Augmented Reality to aid assembly at the satellite production facility in El Segundo, CA. This presentation will discuss our work to bring an Augmented Reality tool to the shop floor, integrating product design and manufacturing techniques into a synergistic backbone and how this approach can support the delivery of engineering design intent on the shop floor. The team is developing a system to bring designer's 3D CAD models to the technicians on the shop floor, and spatially register them to live camera views of production hardware. We will discuss our work in evaluating multiple motion captures systems, how we integrated a Vicon system with Augmented Reality software, and our development of a user interface allowing technicians to manipulate the graphical display.
Technical Paper

Improving Load Regeneration Capability of an Aircraft

2009-11-10
2009-01-3189
This paper presents new concepts for improving management of the electrical load power regeneration of an aircraft. A novel electrical system that allows for load regeneration back to the distribution bus is described. This approach offers the benefits of reduced weight, volume, and cost, as well as improved reliability. Also described is an electrical machine control mechanism that creates motor power to run the prime mover (i.e., the main engine to dissipate the regenerated power). Instead of main engine generation, this approach can be applied to an auxiliary power unit (APU) or power and thermal management system (PTMS). Background information regarding the regeneration concept is presented. The concept definition and the various modes of operation of the improved system are analyzed and described in detail. Results from the dynamic simulation of the system model are included.
Technical Paper

Photometric and Colorimetric Measurement Procedures for Airborne Electronic Flat Panel Displays — SAE ARP 4260

2009-11-10
2009-01-3143
SAE ARP 4260 Photometric and Colorimetric Measurement Procedures for Airborne Electronic Flat Panel Displays [1] has recently been revised. This new revision reaffirms that ARP 4260 is pertinent to the aviation industry, changes the content to keep up with the state of the art, and adds clarification where needed. ARP 4260 contains methods used to measure the optical performance of airborne electronic flat panel display systems and is referenced in SAE ARP 4256, Design Objectives for Liquid Crystal Displays for Part 25 (Transport) Aircraft [2] and in SAE AS 8034, Minimum Performance Standard for Airborne Multipurpose Electronic Displays [3].
Technical Paper

Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

2009-07-12
2009-01-2401
Recovery of potable water from wastewater is essential to the success of long-duration human missions to the moon and Mars. Honeywell International and a team from the NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, which is referred to as the cascade distillation subsystem (CDS), uses an efficient multistage thermodynamic process to produce purified water. A CDS unit employing a five-stage distiller engine was designed, built, and delivered to the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing; an initial round of testing was completed in fiscal year 2008 (FY08). Based, in part, on FY08 testing, the system is now in development to support an Exploration Life Support Project distillation comparison test that is expected to begin in 2009.
Journal Article

Next Generation Power and Thermal Management System

2008-11-11
2008-01-2934
The power and thermal management system (PTMS) developed by Honeywell for aircraft is an integral approach combining the functions of the auxiliary power unit (APU), emergency power unit (EPU), environmental control system (ECS), and thermal management system (TMS). The next generation PTMS discussed in this paper incorporates the new more electric architecture (MEA) and energy efficient aircraft (EEA) initiatives. Advanced system architectures with increased functionality and further integration capabilities with other systems are included. Special emphasis is given to improvements resulting from interactions with the main engine, main electric power generation, and flight actuation. The major drivers for advancement are highlighted, as well as the potential use of new technologies for turbomachinery, heat exchangers, power electronics, and electric machines. More advanced control and protection algorithms are considered.
Technical Paper

Dynamic Thermal Management System Modeling of a More Electric Aircraft

2008-11-11
2008-01-2886
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the thermal management systems (TMS). A thermal management system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. It is anticipated that the tracking of thermal energy through numerical integration will lead to more accurate predictions of worst case TMS sizing conditions. In addition, the non-proprietary nature of the tool affords users the ability to modify component models and integrate advanced conceptual designs that can be evaluated over multiple missions to determine the impact at a system level.
Journal Article

Advanced Electric Drives for Aerospace More Electric Architectures

2008-11-11
2008-01-2861
This paper discusses the problem of obtaining electric machines (EM) for advanced electric drives (AED) used in more electric architecture (MEA) applicable to aircraft, spacecraft, and military ground vehicles. The AED are analyzed by those aspects of Six Sigma theory that relate to critical-to-quality (CTQ) subjects. Using this approach, weight, volume, reliability, efficiency, and cost CTQ are addressed to develop a balance among them, resulting in an optimized system. The influence of machine controllers and system considerations is discussed. As a part of the machine evaluation process, speeds, bearings, complexities, rotor mechanical and thermal limitations, torque pulsations, currents, and power densities are considered. A methodology for electric machine selection is demonstrated. An example of high-speed, high-performance machine application is shown. A system approach is used for overall electric machine selection and optimization.
Technical Paper

Power Distribution for Spacecraft Payloads that Employ State of the Art Radiation Hardened Integrated Circuits

2006-11-07
2006-01-3058
Recent advances in the state of the art of space-borne data processors and signal processors have occurred that present some unprecedented constraints relating to their power needs. Such processors include the class of multiprocessors providing computational capabilities in the billions of floating point operations per second. Processors of this type tend to require use of modern radiation tolerant or radiation hardened integrated circuits requiring very low voltage power supplies that place considerable challenge on power distribution and conversion within those processing payloads. The primary challenges are efficient conversion of power from the spacecraft power bus to these low voltages and distribution of the very high accompanying currents within the payload while maintaining proper voltage regulation (typically +/− 5%). Some integrated circuits require 10 Amps or more at 1Volt, as an example [3], [6].
Technical Paper

Advanced Vehicle Wire Health for the 21st Century

2004-11-02
2004-01-3159
Traditionally, vehicle power wiring safety has consisted of a reactive thermal circuit breaker that responds to an overload condition. In addition, maintenance operations have been reactive as well, searching for a possible damaged section of wiring in a large and often difficult to access wire bundle. Advancements in detection of changes in impedance, arc, corona, and reflectometry to measure general wire damage have the potential to automate the process, while increasing vehicle safety and reducing costs. Some of these technologies are also pro-active and can warn of a potential problem during routine maintenance checks using hand held instrumentation or if embedded in a vehicle can detect problems prior to power up or after system power up using real-time monitoring.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

A Selected Operational History of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2004-07-19
2004-01-2470
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001.
Technical Paper

Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant - Phase II

2004-07-19
2004-01-2472
The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Honeywell's Automotive Door Latch Design is Ideal for Corporate Latch Strategy

2003-03-03
2003-01-1190
In response to consumer demand, automakers are adding more safety, security, and convenience features to vehicle access control systems. Also, in a continuing effort to be more profitable, automakers are reducing costs by outsourcing the design of systems/sub-systems/components, reducing their supply base, and minimizing part numbers by sharing components across several platforms. In an attempt to improve efficiency and productivity, many OEM's have adopted a “corporate latch” strategy, implementing the same latch across several manufacturing platforms and marketing divisions. Honeywell's revolutionary door latch design efficiently and cost effectively addresses vehicle OEMs' current and future requirements for performance and functionality.
Technical Paper

Innovations in Laser Welding of Thermoplastics: This Advanced Technology is Ready to be Commercialized

2002-07-09
2002-01-2011
Previously we reported to the SAE 2000 basics in selection of various colored and un-colored/natural nylon 6 (polyamide - PA 6) based plastics for laser welding technology. Later we presented to Antec1 2001 and to SAE 2002 our developments of colored in black through-transmissible grades of PA 6 plastics, which were specially tailored for the specifics of the design and laser welding technology. In this current paper, we will try to enhance the understanding of the engineering community regarding the usefulness and applicability of laser welding technology, developed colored thermoplastics, and its increasing use in various automotive and transportation applications.
Technical Paper

Innovations in Laser Welding Technology: State of the Art in Joining of Thermoplastics and Advances with Colored Nylon for Automotive Applications

2002-03-04
2002-01-0716
Previously we reported to the SAE'99 our findings on selections of nylon (polyamide) based plastics for laser welding (LW) technology. In this current paper, we will try to increase the understanding of the engineering community regarding the usefulness and applicability of an advanced LW technology (and developed thermoplastics), and its increasing use in various automotive applications.
Technical Paper

Control System Development for Automotive PEM Fuel Cell Vehicles

2001-08-20
2001-01-2548
Honeywell Engines and Systems (E&S) Environmental Control Systems (ECS) division has been developing a 50 kW proton exchange membrane (PEM) fuel cell brassboard system for automotive application as part of a U.S. Department of Energy (DOE) program. A primary issue in the development of the brassboard is the automatic control of the system. A preferred DOE requirement is dynamic load following from idle to peak power. Since the PEM stacks require precise inlet condition control for both the air and fuel to achieve high efficiency, the control system must provide good dynamic tracking and low steady-state error over the entire operating range. In addition, the controller must provide automatic system start-up and shutdown, built-in-test (BIT) to monitor key system parameters, and take corrective action if those parameters reach an unsafe condition. The purpose of this paper is to present the control system design approach taken by the authors to achieve those goals.
Technical Paper

Development of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2001-07-09
2001-01-2332
The International Space Station (ISS) internal thermal control system (ITCS) has been developed jointly by the Boeing Corporation, Huntsville, Alabama, and Honeywell Engines & Systems, Torrance, California, to meet ISS internal thermal control needs. The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first module, the US Laboratory Module, was launched in February 2001 and is now operational on the ISS. The dual loop system is comprised of a low-temperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a three-way mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, a pump bypass assembly (PBA), and a heat exchanger.
Technical Paper

Improved NDI Techniques for Aircraft Inspection

1998-11-10
983105
Through the use of an “Integrated Product Team” approach and new inspection techniques incorporating the latest in imaging capabilities and automation, the costs of some man-power intensive tasks can now be drastically reduced. Also, through the use of advanced eddy current techniques, the detectable size of cracks under flush-head fasteners can be reduced while maintaining reliable inspection. This article describes the evaluation and results obtained using eddy current technology to determine the minimum fasteners, Secondly, it describes the integrated efforts of engineers at Boeing DPD and Northwest Airlines in the successful application of MAUS eddy current scanning of the DC-10 circumferential and axial crow splices. The eddy current scanning greatly reduced the man-hour effort required for the existing radiographic inspection
X