Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Simulating Local Concentration Factor Sensitivities for Ice Crystal Icing Using LEWICE3D

2023-06-15
2023-01-1404
Determining local ice crystal icing concentration factors in the region of the forward fuselage is critical for setting the Total Water Content levels for air data probe qualification testing. Simulation, modeling, and testing techniques for this concentration-factor phenomenon are still in their infancy, and there is currently not a significant amount of this type of analysis in the literature. A representative, 3D analysis was conducted using transport airplane geometry and flight conditions that explored the sensitivities resulting from parametric changes to flight and ice crystal icing conditions, particle modeling parameters, and bouncing effects.
Technical Paper

A Phased Approach to Optimized Robotic Assembly for the 777X

2019-03-19
2019-01-1375
Low rate initial production of the 777X flight control surfaces and wing edges has been underway at the Boeing St. Louis site since early 2017. Drilling, inspection, and temporary fastening tasks are performed by automated multi-function robotic systems supplied by Electroimpact. On the heels of the successful implementation of the initial four (4) systems, Phases II and III are underway to meet increasing production demands with three (3) and four (4) new cells coming online, respectively. Assemblies are dedicated to particular cells for higher-rate production, while all systems are designed for commonality offering strategic backup capability. Safe operation and equipment density are optimized through the use of electronic safeguards. New time-saving process capabilities allow for one-up drilling, hole inspection, fastening, fastener inspection, and stem shaving.
Book

Integrated Vehicle Health Management - System of Systems Integration

2017-07-24
Integrated Vehicle Health Management (IVHM) is the unified capability of a system of systems (SoS) to assess the current or future state of the member system health, and integrate it within a framework of available resources and operational demand. As systems complexities have increased, so have system support costs, driven by more frequent and often enigmatic subsystem failures. IVHM strategies can be used to mitigate these issues by taking a Systems of Systems view. Combined with advanced decision support methods, this approach can be used to more effectively predict, isolate, schedule, and repair failed subsystems, reducing platform support costs and minimizing platform down time. Integrated Vehicle Health Management- System of Systems Integration brings together ten seminal SAE technical papers addressing the challenges and solutions to maintaining highly complex vehicles.
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

2015-06-15
2015-01-2088
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Journal Article

Soaring with Eagles: Birdstrike Analysis in the Design and Operation of New Airplanes

2013-09-17
2013-01-2234
We live in an era of increasing twin-engine commercial airplane operations, with large and very quiet high bypass ratio engines. At the same time, due to several decades of increased attention to the environment, we have large and increasing hazardous species bird populations. These trends, when combined, are not a prescription for continued assurance of a remarkable and enviable safety record for commercial aviation. Therefore, greater diligence must be placed on the evaluation of the current and future aviation wildlife hazard. We have some new weapons in this fight for greater capability to live with this situation. The basic problem is that different databases are populated independently from one another and often contain conflicting, contradictory, and erroneous data. Databases that were used individually, but not necessarily combined, are being utilized in a conjoined methodology to give us a better picture of the actual risk involved.
Technical Paper

Static Calibration and Compensation of the Tau Parallel Kinematic Robot Using a Single 6-DOF Laser Tracker

2011-10-18
2011-01-2653
Parallel kinematic mechanisms (PKMs) offer advantages of high stiffness to mass ratios, greater potential for accuracy and repeatability, and lower cost when compared to traditional assembly machines. Because of this, there is a strong interest in using PKMs for aerospace assembly and joining operations. This paper looks at the calibration of a prototype Gantry TAU robot by extending the higher-order implicit loop calibration techniques developed for serial link mechanisms to parallel link mechanisms. The kinematic model is based on the geometric model proposed by Dressler et al., augmented with a cubic spline error model of the motion errors for each of the three translation actuators resulting in 185 parameters. Measurements are taken with a 6-DOF laser tracker, and the kinematic parameters are solved as the maximum likelihood parameter estimate.
Technical Paper

Oscillating Airfoil Icing Tests in the NASA Glenn Research Center Icing Research Tunnel

2011-06-13
2011-38-0016
A team from the USA rotorcraft industry, NASA, and academia was established to create a validated high-fidelity computational fluid dynamics (CFD) icing tool for rotorcraft. Previous work showed that an oscillating blade with a periodic variation in angle of attack causes changes in the accreted ice shape and this makes a significant change in the airfoil drag. Although there is extensive data for ice accumulation on a stationary airfoil section, high-quality icing-tunnel data on an oscillating airfoil is scarce for validating the rotorcraft icing problem. In response to this need, a two-dimensional (2D) oscillating airfoil icing test was recently performed in the Icing Research Tunnel at the NASA Glenn Research Center. Three leading-edge specimens for an existing 15-inch chord test apparatus were designed and instrumented to provide the necessary data for the CFD code validation.
Book

What Engineers and Managers Need to Know About Human Factors

2003-04-25
This book provides an introduction to the role, value, scope and the unique contributions the field of human factors can bring to the design process for all products. Aimed at the engineer and manager with no formal training in the life and social sciences, it is not intended to train the methods of human factors, but rather to provide knowledge that will enable engineers and managers to determine if including human factors in the planning and execution of product design is justified. Chapters include: Reasons Engineers Provide for Limiting Emphasis on Human Factors The Academic Disciplines Supporting Human Factors Human Factors Engineering and more
Technical Paper

Design and Manufacturing Processes for Automated Assembly Systems

1997-09-30
972802
In traditional manufacturing when a product (such as a wing panel or wing spar) was designed the manufacturing process to build the product was of little consideration. The design of the product was manually created on a 2 dimensional drawing without investigation of what data could be included to achieve a more productive automated assembly (fastening) system. Even less development was expended on integration of part design and manufacturing to improve downstream processes and product quality. Today, every avenue of optimization and continuous quality improvement must be explored to create a lean manufacturing environment that produces low costs with high productivity at all levels. This paper will describe design and manufacturing engineering processes used to streamline creation of machine control data for automated fastening systems. Applying design for manufacturing concepts and automation of upstream processes to provide significant benefits in the production environment.
Technical Paper

Fitting and Coolant Line Insulation Design for International Space Station

1996-07-01
961354
International Space Station (ISS) will provide Low Temperature (LT), and Moderate Temperature (MT) Internal Thermal Control System (ITCS) coolant to payloads and other users. LT ITCS delivers 38° to 42° F coolant MT ITCS delivers 62° to 65° F coolant. By using LT ITCS cabin air, dew point is controlled by the Thermal and Humidity Control (THC) subsystem to be 49° to 55° F when manned. Since the dew point temperature is above the LT ITCS nominal temperature, any components that have this coolant in them can be expected to condense moisture on their surfaces. The components that are affected are many. This paper, however, is concerned only with the lines and Quick Disconnects (QDs) that are a part of the total ITCS system.
Technical Paper

Reliability Prediction Models for Microcircuits

1970-02-01
700645
Some of the common methods of reliability prediction utilizing calendar or lot size dependence and various "k" factors for complexity, end use, product family, and environment are briefly reviewed. These techniques, although sometimes accurate and simple, do not provide adequate reliability tradeoff information and do not fully treat the effects of vendor variability and improvements in the state-of-the-art. From these techniques it is frequently difficult to understand causes of observed failure rates and to determine what can be done to achieve cost-effective reliability. One method of alleviating these objections is to derive a model based on microcircuit failure mode and mechanism knowledge. The current status of microcircuit failure knowledge is reviewed. Considerable use is made of data which has been acquired at very high stress levels and the relationship between this data and end use data is discussed.
X