Refine Your Search

Topic

Author

Search Results

Technical Paper

3 Inch Ice Shapes, AB Initio

2023-06-15
2023-01-1434
The term “3 inch ice shapes” has assumed numerous definitions throughout the years. At times it has been used to generally characterize large glaze ice accretions on the major aerodynamic surfaces (wing, horizontal stabilizer, vertical stabilizer) for evaluating aerodynamic performance and handling qualities after a prolonged icing encounter. It has also been used as a more direct criterion while determining or enforcing sectional ice shape characteristics such as the maximum pinnacle height. It is the authors’ observation that over the years, the interpretation and application of this term has evolved and is now broadly misunderstood. Compounding the situation is, at present, a seemingly contradictory set of guidance among (and even within) the various international regulatory agencies resulting in an ambiguous set of expectations for design and certification specialists.
Technical Paper

Simulating Local Concentration Factor Sensitivities for Ice Crystal Icing Using LEWICE3D

2023-06-15
2023-01-1404
Determining local ice crystal icing concentration factors in the region of the forward fuselage is critical for setting the Total Water Content levels for air data probe qualification testing. Simulation, modeling, and testing techniques for this concentration-factor phenomenon are still in their infancy, and there is currently not a significant amount of this type of analysis in the literature. A representative, 3D analysis was conducted using transport airplane geometry and flight conditions that explored the sensitivities resulting from parametric changes to flight and ice crystal icing conditions, particle modeling parameters, and bouncing effects.
Journal Article

Flight in Icing Regulatory Evolution and the Influence on Aircraft Design

2019-06-10
2019-01-1958
Flight in icing for transport category aircraft certification presents a particularly challenging set of considerations to establish adequate safety commensurate with the associated risk while balancing design complexity and efficiency. A review highlighting important aspects of the regulatory evolution and guiding principles for flight in icing certification is presented, including the current standards and recent rulemaking activity.
Technical Paper

Digital Ply Tracing Software for Composite Repairs

2019-03-19
2019-01-1388
With the increasing usage of composites for aerodynamic surfaces, the use of bonded composite repair processes are becoming more common. The repair process remains a largely manual process, with repair technicians scarfing or stepping, tracing the plies, fabricating repair patches and finally bonding the patch. The patch fabrication process becomes increasingly tedious and tiring due to cutting and tracing of each individual ply twice for thermal surveying and the final repair patch. We have developed a system that can replace the tracing and cutting components of the fabrication process using low cost, commercial off the shelf (COTS) tools. We present the ply boundary extraction method used and detail the nesting algorithm used to produce the final plies. Our software is benchmarked against the manual process with a list of successfully cut materials using a low cost fabric cutter with a steel drag blade.
Book

Managing Aerospace Projects

2017-09-12
Over the next twenty years, the role and contributions of successfully managed projects will continue to grow in importance to aerospace organizations, especially considering the demands of emerging markets. The accompanying challenges will be how to effectively reduce product and process cost where known (incremental) and unknown (transformational) technological innovation is required. Managing Aerospace Projects brings together ten seminal SAE technical papers that support the vision of a more holistic and integrated approach to highly complex projects. Using the concept of project management levers, Dr.
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

2015-06-15
2015-01-2088
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Journal Article

Soaring with Eagles: Birdstrike Analysis in the Design and Operation of New Airplanes

2013-09-17
2013-01-2234
We live in an era of increasing twin-engine commercial airplane operations, with large and very quiet high bypass ratio engines. At the same time, due to several decades of increased attention to the environment, we have large and increasing hazardous species bird populations. These trends, when combined, are not a prescription for continued assurance of a remarkable and enviable safety record for commercial aviation. Therefore, greater diligence must be placed on the evaluation of the current and future aviation wildlife hazard. We have some new weapons in this fight for greater capability to live with this situation. The basic problem is that different databases are populated independently from one another and often contain conflicting, contradictory, and erroneous data. Databases that were used individually, but not necessarily combined, are being utilized in a conjoined methodology to give us a better picture of the actual risk involved.
Journal Article

Parametric Life Cycle Assessment for the Design of Aircraft

2013-09-17
2013-01-2277
Current methods of life cycle assessment (LCA) include input-output (IO) models and process-based LCA. These methods either require excessive effort and time to reach a conclusion (process LCA) or do not adequately model how a change in a product's design will affect the environmental footprint (IO LCA). A variation of process-based LCA developed specifically for aircraft is presented in this study. A tool implementing this LCA, “qUWick,” is rapid and easily applicable to multi-disciplinary design optimization of aircraft. Models developed for the material production, manufacturing, usage, and end-of-life of an aircraft are examined. Outputs of qUWick are discussed for future air vehicles. When compared to process LCAs with similar boundaries, qUWick gives similar results, however qUWick models several stages of an aircraft's life cycle more accurately than other aircraft process-based LCAs.
Journal Article

Optimization Methods for Portable Automation Equipment Utilizing Motion Tracking Technology

2011-10-18
2011-01-2668
The use of portable automated equipment has increased in recent years with the introduction of flex track, crawling robots, and other innovative machine configurations. Portable automation technologies such as these lower infrastructure costs by minimizing factory floor space requirements and foundation expenses. Portable automation permits a higher density of automated equipment to be used adjacent to aircraft during assembly. This equipment also allows concurrent work in close proximity to automated processes, promotes flexibility for changes in rate, build plan, and floor space requirements throughout the life of an airplane program. This flexibility presents challenges that were not encountered with traditional fixed machine drilling centers. The work zone surrounding portable machines is relatively small, requiring additional setup time to relocate and position machines near the airframe.
Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Journal Article

Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Testing 2008/2009

2009-07-12
2009-01-2444
Developmental efforts are seeking to improve upon the efficiency and reliability of typical packed beds of sorbent pellets by using structured sorbents and alternative bed configurations. The benefits include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption leading to increased process efficiency. Test results that demonstrate such improvements are described and presented.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2007/2008

2008-06-29
2008-01-2082
The design of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. The approach for Orion is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of the Sorbent Based Atmosphere Regeneration (SBAR) system, including test articles, a facility test stand, and full-scale testing in late 2007 and early 2008 is discussed.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Guidance for Trade Studies of Flight-Equivalent Hardware

2007-07-09
2007-01-3223
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2006/2007

2007-07-09
2007-01-3254
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. For Orion, the approach is taken that all metabolic water must be removed by the Sorbent-Based Atmosphere Revitalization System (SBAR), a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a facility test stand, and subsequent testing of the SBAR in late 2006 and early 2007 is discussed.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle

2006-07-17
2006-01-2219
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the crew exploration vehicle (CEV) atmosphere is presented. For the CEV, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a full scale and subscale facility test stand, and other aspects of the SBAR development program is discussed.
Technical Paper

Composite Structure Utilization - Commercial Airplanes

2005-10-03
2005-01-3315
The advantage of higher strength to weight and higher stiffness to weight ratios for composite structure compared to metallic structure is well known in the aerospace industry, especially to commercial airline world. Its increased usage in the airplane structure is a direct reflection of the benefit in reduction of operating costs by lowering the fuel usage. This factor turned out to be more important for the airlines after the September 11, 2001 incident and also due to the increase in fuel prices. Besides reduction in the operating costs, airlines are seeking ways to reduce their maintenance costs. Most of the damage to the aluminum structure airplanes is attributed to corrosion. The non-metallic composite structure has an excellent property of resistance to corrosion. The structure is more damage tolerant due to the absence of fastener holes. As a result, its increased usage serves the airlines by lowering the maintenance and inspection costs.
X