Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

Early Noise Analysis for Robust Quiet Brake Design

2009-04-20
2009-01-0858
At the early design stage it is easier to achieve impacts on the brake noise. However most noise analyses are applied later in the development stage when the design space is limited and changes are costly. Early noise analysis is seldom applied due to lack of credible inputs for the finite element modeling, the sensitive nature of the noise, and reservations on the noise event screening of the analysis. A high quality brake finite element model of good components’ and system representation is the necessary basis for credible early noise analysis. That usually requires the inputs from existing production hardware. On the other hand in vehicle braking the frequency contents and propensity of many noise cases are sensitive to minor component design modifications, environmental factors and hardware variations in mass production. Screening the noisy modes and their sensitivity levels helps confirm the major noisy event at the early design stage.
Journal Article

Modeling and Simulation of Torsional Vibration of the Compliant Sprocket in Balance Chain Drive Systems

2008-06-23
2008-01-1529
The work presented in this paper outlines the development of a simulation model to aid in the design and development of a compliant sprocket for balancer drives. A design with dual-mass flywheel and a crank-mounted compliant chain sprocket greatly reduces interior noise levels due to chain meshing. However, experimental observations showed the compliant sprocket can enter into resonance and generate excessive vibration energy during startup. Special features are incorporated into the compliant sprocket design to absorb and dissipate this energy. Additional damper spring rate, high hysteresis and large motion angle that overlap the driving range may solve the problem during engine start-up period. This work develops a simulation model to help interpret the measured data and rank the effectiveness of the design alternatives. A Multibody dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Journal Article

Chevrolet Sequel: Reinventing the Automobile

2008-04-14
2008-01-0421
Sequel is the third vehicle in GM's Reinvention of the Automobile and is the first zero emissions passenger vehicle to drive more than 300 miles on public roads without refueling or recharging. It is purpose-built around the hydrogen storage and fuel cell systems and uses the skateboard principle introduced in the Autonomy vision concept and the Hy-wire proof-of-concept vehicles. Sequel's aluminum structure, Flexray controlled chassis-by-wire systems and AWD system comprising a single front electric motor and two rear wheel motors make it, perhaps, the most technically advanced automobile ever built. The paper describes the vehicle's design and performance characteristics.
Technical Paper

Stability Analysis of Solid Axle, Torque Arm Suspension Vehicles under Heavy Acceleration and Braking Events

2008-04-14
2008-01-1144
Power-hop is a self-excited and potential locally unstable torsional vibration of a vehicle's driveline, caused by stick and slip of the tire. It is especially prevalent in high-powered cars and trucks, under heavy acceleration. Torque arms have been used to reduce power-hop for many solid axle suspension vehicles, mostly trucks and old rear wheel drive sports cars. It has long been known that the shortest torque arm easily reduces power-hop, but will increase hop under braking (braking-hop). The fundamental mechanism of torque arm effects on solid axle suspension vehicles, however, has not yet been fully explained. This study explains the stability of solid axle, torque arm suspension vehicles under heavy acceleration and braking. Analytical techniques utilize conventional linear analysis and a non-linear coupling force in a 4 degree of freedom dynamic model.
Technical Paper

Robust Assessment of USCAR Electrical Connectors Using Standardized Signal-To-Noise

2008-04-14
2008-01-0364
Robust assessment using standardized signal-to-noise (SS/N) is a Design For Six Sigma (DFSS) methodology used to assess the mating quality of USCAR electrical connectors. When the insertion force vs. distance relationship is compared to a standard under varying environmental and system-related noise conditions, the ideal function is transformed into a linear relationship between actual and ideal force at the sample points acquired during the mating displacement. Since the ideal function used in the robust assessment of competing designs has a linear slope of 1 through the origin, the SS/N function used is of the form 10 log (1/σ2), also known as nominal-the-best type 2. Using this assessment methodology, designs are compared, with a higher SS/N indicating lower variation from the standard.
Technical Paper

Brake Noise Analysis with Lining Wear

2008-04-14
2008-01-0823
It is well known that lining reduction through wear affects contact pressure profile and noise generation. Due to high complexity in brake noise analysis, many factors were not included in previous analyses. In this paper, a new analysis process is performed by running brake “burnishing” cycles first, followed by noise analysis. In the paper, brake lining reduction due to wear is assumed to be proportional to the applied brake pressure with ABAQUS analysis. Brake pads go through four brake application-releasing cycles until the linings settle to a more stable pressure distribution. The resulting pressure profiles show lining cupping and high pressure spots shifting. The pressure distributions are compared to TekScan measurements. Brake noise analysis is then conducted with complex eigenvalue analysis steps; the resulting stability chart is better correlated to testing when the wear is comprehended.
Journal Article

Superelement, Component Mode Synthesis, and Automated Multilevel Substructuring for Rapid Vehicle Development

2008-04-14
2008-01-0287
This paper presents the new techniques/methods being used for the rapid vehicle development and system level performance assessment. It consists of two parts: the first part presents the automated multilevel substructuring (AMLS) technique, which greatly reduces the computational demands of larger finite element models with millions of degrees of freedom(DOF) and extends the capabilities to higher frequencies and higher level of accuracy; the second part is on the superelement in conjunction with the Component Mode Synthesis (CMS) and also Automated Component Mode Synthesis (ACMS) techniques. In superelement, a full vehicle model is divided into components such as Body-in-white, Front cradle/chassis, Rear cradle/chassis, Exhaust, Engine, Transmission, Driveline, Front suspension, Rear suspension, Brake, Seats, Instrument panel, Steering system, tires, etc. with each piece represented by reduced stiffness, mass, and damping matrices.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

NVH Analysis of Balancer Chain Drives with the Compliant Sprocket of the Crankshaft with a Dual-Mass Flywheel for an Inline-4 Engine

2007-05-15
2007-01-2415
The work presented in this paper outlines the design and development of a compliant sprocket for balancer drives in an effort to reduce the noise levels related to chain-sprocket meshing. An experimental observation of a severe chain noise around a resonant engine speed with the Dual-Mass Flywheel (DMF) and standard build solid (fixed) balancer drive sprocket. Torsional oscillation at the crankshaft nose at full load is induced by uneven running of crankshaft with a dual-mass flywheel system. This results in an increase of the undesirable impact noise caused by the meshing between the chain-links and the engagement/disengagement regions of sprockets, and the clatter noise from the interaction between the vibrating chain and the guides. This paper evaluates and discusses the benefits that the compliant sprocket design provided. A multi-body dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Global Research and Development: GM Case Study India

2006-10-16
2006-21-0086
Global R&D is in its infant stages. Senior executives and their organizations need to develop deeper understanding of the opportunities and challenges of off-shoring R&D. While global pressure will continue to mount to deliver more value at ever lower cost, the labor cost arbitrage break in countries such as China or India will not last forever. The fundamental challenge is to use the current low-cost advantage to build rapidly a sustainable technology, product and service advantage. This requires the development of a balanced local growth strategy that is well adapted to the regional strengths while ensuring a seamless global integration of people, organizations, and processes. This paper focuses on the build-up of GM's R&D activities in India with an emphasis on research in one of the key thrust areas in GM R&D - Automotive Electronics, Controls, and Software. Lessons learned apply also to development.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Optimal Mount Selection with Scattered and Bundled Stiffness Rates

2006-04-03
2006-01-0736
The optimal selection of vehicle body and powertrain mounts from “mount libraries” is one of the major undertakings to achieve optimal vehicle dynamics and N&V performance through the reuse of existing mount designs. The great challenges of the process are due to the facts that conventional optimization procedures, either through simulation or DOE, can not be used directly because the stiffness rates of the mounts are scattered and bundled. Sorting out the best through hardware tests is generally unrealistic simply due to the huge number of mount combinations. This paper presents a new approach to the optimal mount selection, and demonstrates through applications that it is efficient and reliable. This approach characterizes a mount by its effective stiffness rate and evaluates its deviation from an associated target. Continuous dummy variables are used to determine the selection targets through conventional processes for performance optimization.
Technical Paper

Optimum Design of Hood Ajar Switch For Quality

2006-04-03
2006-01-0735
The Hood ajar sensing system provides customer feedback regarding the latch positional state of hood. If the sensing system is not robust to variation due to manufacturing, thermal conditions, and assembly, diagnostic failures can result. Executing various elements of the design for six sigma process can reduce the potential for diagnostic failures. This paper presents a method for achieving quality improvements by developing transfer functions, and using them for sensitivity and variance analysis. Control parameters were optimized to minimize non-conformal situations in the presence of various noise conditions.
Technical Paper

High Performance Vehicle Chassis Structure for NVH Reduction

2006-04-03
2006-01-0708
The main objective of this paper was to determine if the vehicle performance can be maintained with a reduced mass cradle structure. Aluminum and magnesium cradles were compared with the baseline steel cradle. First, the steel chassis alone is analyzed with the refined finite element model and validated with experimental test data for the frequencies, normal modes, stiffnesses and the drive-point mobilities at various attachment mount/bushing locations. The superelement method in conjunction with the component mode synthesis (CMS) technique was used for each component of the vehicle such as Body-In-White, Instrument Panel, Steering Column Housing & Wheel, Seats, Cradles, CRFM, etc. After assemblage of all the superelements, analysis was carried out by changing the front and rear cradle gauges and the material properties. The drive-point mobility response was computed at various locations and the noise (sound pressure) level was calculated at the driver and passenger ears.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Multi Objective Robust Optimization for Idle Performance

2006-04-03
2006-01-0757
This paper presents a pioneer work and first time application of Multi Objective Robust Optimization to analytically improve Idle Shake Performance. The method is developed to obtain a robust design with multiple objectives under consideration along with managing material property variation. It was a Robust Optimization on top of Multi Objective Genetic Algorithm, Robu-MOGA. The design variables in the study included the nominal values and tolerances of Sound Transmission Loss property, and interior material Absorption property. The analytical objective was not only to minimize the peak airborne noise at each specified frequency, but also to reduce the total cost and the total mass of the materials. In the study, AutoSEA (statistical energy analysis) from ESI Software, Inc. was used as the solver. AutoSEA was integrated with iSIGHT from Engineous Software, Inc.
X