Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Modelling of an Adjustable Generic Simplified Vehicle for Pedestrian Impact and Simulations of Corresponding Reference PMHS Tests Using the GHBMC 50th Percentile Male Pedestrian Simplified Model

2018-11-12
2018-22-0013
In a previous study (Song et al. 2017), an adjustable generic simplified vehicle buck was developed; eleven PMHS were impacted by the buck representing a SUV, a van and a sedan successively; and biofidelity corridors were established. The objectives of the current study were 1) to develop the computational model of the buck, and 2) to simulate these PMHS tests with the buck model and to assess the biofidelity of the GHBMC 50th percentile male pedestrian simplified model (GHBMC M50-PS). First, coupon tensile tests and static and dynamic compression tests were performed on the steel tubes representing the bonnet leading edge (BLE), the bumper and the spoiler used in the above PMHS tests. Based on these tests, the computational models of the above components were then developed and validated. Next, the buck model was built with the component models, and used to simulate the PMHS tests with the GHBMC M50-PS model.
Technical Paper

Comparison of Kriging and Moving Least Square Methods to Change the Geometry of Human Body Models

2015-11-09
2015-22-0013
Finite Element Human Body Models (HBM) have become powerful tools to study the response to impact. However, they are typically only developed for a limited number of sizes and ages. Various approaches driven by control points have been reported in the literature for the non-linear scaling of these HBM into models with different geometrical characteristics. The purpose of this study is to compare the performances of commonly used control points based interpolation methods in different usage scenarios. Performance metrics include the respect of target, the mesh quality and the runability. For this study, the Kriging and Moving Least square interpolation approaches were compared in three test cases. The first two cases correspond to changes of anthropometric dimensions of (1) a child model (from 6 to 1.5 years old) and (2) the GHBMC M50 model (Global Human Body Models Consortium, from 50th to 5th percentile female).
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

2003-10-27
2003-22-0011
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
X