Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduced order model for modal analysis of electric motors considering material and dimensional variations

2024-06-12
2024-01-2945
With the electrification of the automotive industry, electric motors have emerged as pivotal components. A profound understanding of their vibrational behaviour stands as a cornerstone for guaranteeing not only the optimal performance and reliability of vehicles in terms of noise, vibration, and harshness (NVH), but also the overall driving experience. The use of conventional finite element analysis (FEA) techniques for identification of the natural frequencies characteristics of electric motors often imposes significant computational loads, particularly when accurate material and geometrical properties and wider frequency ranges are considered. On the other hand, traditional reduced order vibroacoustic methodologies utilising simplified 2D representations, introduce several assumptions regarding boundary conditions and properties, leading to sacrifices in the accuracy of the results.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Quantitative Multi-Physics Tools for Automotive Wiper Design

2023-04-11
2023-01-0602
The primary function of automotive windscreen wipers is to remove excess water and debris to secure a clear view for the driver. Their successful operation is imperative to vehicle occupants’ safety. To avoid reliance on experimental testing there is a need to develop physics-based models that can quantify the effects of design-based decisions on automotive wipers. This work presents a suite of evaluative tools that can provide quantitative data on the effects of design decisions. We analyse the complex non-linear contact interaction between the wiper blade and the automotive screen using finite element analysis, assessing the impact of blade geometry on the contact distribution. The influence of the evolution of normal applied load by the wiper arm is also investigated as to how it impacts the contact distribution evolution. The dynamics of the blade are subsequently analysed using a multiple connected mass spring damper system.
Journal Article

Characterisation of the Tyre Spray Ejected Downstream of a Bluff Automotive Body

2022-03-29
2022-01-0893
Considerations of surface contamination and airborne spray are becoming increasingly significant throughout the automotive design process. Advanced driver assistance systems, such as autonomous cruise control, are growing in popularity. These systems rely on external sensors, the performance of which may be impaired by both direct obstruction and spray. Existing experimental methods of assessing front-end surface contamination and wiper performance have typically utilised fixed spray-grids positioned upstream of the vehicle. The resulting spray is largely steady in nature, in contrast to the unsteady flow-field and tyre spray that would be produced by preceding vehicles. This paper presents the numerical analysis of the spray ejected downstream of a simplified automotive body. The continuous phase (air) is solved using a DDES-based approach coupled with a Lagrangian representation of the dispersed phase (water).
Technical Paper

Real-Time Sound and Vibration Modelling for Electric Motor

2021-08-31
2021-01-1081
The replacement of the ICE engine with an electric motor has led to a significant reduction in vibration and noise. The characteristics of the electric motor as part of the powertrain still need consideration from an NVH perspective, as there are still two highly tonal components generating noise to the cabin, albeit at higher frequencies. The radial electromagnetic force causes a structural vibration on the casing which changes with motor speed and can be used to indicate vehicle speed. The current excitation causes a primarily tangential force on the poles of the motor at a specific frequency, but both are narrow band and can cause annoyance. The traditional approach to predicting the sound radiation of electric motors is usually based on finite element analysis (FEA). While this method has the capability to estimate the time response, it is computationally too demanding and does not allow for early investigations at systems level.
Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Journal Article

A Study on the Effect of Debris Location on a Double Element Wing in Ground Effect

2020-04-14
2020-01-0693
Multi-element front wings are essential in numerous motorsport series, such as Formula 1, for the generation of downforce and control of the onset flows to other surfaces and cooling systems. Rubber tyre debris from the soft compounds used in such series can become attached to the wing, reducing downforce, increasing drag and altering the wake characteristics of the wing. This work studies, through force balance and Particle Image Velocimetry (PIV) measurements, the effect a piece of debris has on an inverted double element wing in ground effect. The debris is modelled using a hard-setting putty and is located at different span and chord-wise positions around the wing. The sensitivity to location is studied and the effect on the wake analysed using PIV measurements. The largest effect on downforce was observed when the debris was located on the underside of the wing towards the endplates.
Technical Paper

Psychoacoustic Analysis of High Frequency Elasto-Acoustic Emissions from Hollow Driveshaft Tubes

2018-06-13
2018-01-1475
Lightly damped non-linear systems such as vehicular drivelines undergo a plethora of Noise, Vibration and Harshness (NVH) problems. The clonk phenomenon is one concern which occurs as the result of impulsive torque input in the form of sudden clutch actuation or throttle tip-in and back-out. The resulting impact of meshing gear pairs propagate structural waves down the driveline. With lightly damped thin-walled tubes having high modal density, elasto-acoustic coupling occurs. High frequency noise emission is of metallic nature and quite disconcerting to vehicle occupants as well as passers-by. It is perceived as structural failure and/or poor-quality build. Therefore, the occurrence of the phenomenon is a concern to vehicle manufacturers and progressively constitutes a warranty concern. This paper investigates the clonk phenomenon through use of a long-wheel base rear drive light truck test rig.
Technical Paper

A Computational and Experimental Investigation into the Effects of Debris on an Inverted Double Wing in Ground Effect

2018-04-03
2018-01-0726
Cars in several motor sports series, such as Formula 1, make use of multi-element front wings to provide downforce. These wings also provide onset flows to other surfaces that generate downforce. These elements are highly loaded to maximise their performance and are generally operating close to stall. Rubber debris, often known as marbles, created from the high slip experienced by the soft compound tyres can become lodged in the multiple elements of a front wing. This will lead to a reduction in the effectiveness of the wing over the course of a race. This work will study the effect of such debris, both experimentally and numerically, on an inverted double element wing in ground effect at representative Reynolds numbers. The wing was mounted at two different ride heights above a fixed false-floor in the Loughborough University wind tunnel and the effect of debris blockage modelled by closing sections of the gap between elements with tape.
Technical Paper

Parametric Study of Asymmetric Side Tapering in Constant Cross Wind Conditions

2018-04-03
2018-01-0718
Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients.
Journal Article

The Effect of a Sheared Crosswind Flow on Car Aerodynamics

2017-03-28
2017-01-1536
In the wind tunnel the effect of a wind input on the aerodynamic characteristics of any road vehicle is simulated by yawing the vehicle. This represents a wind input where the wind velocity is constant with height above the ground. In reality the natural wind is a boundary layer flow and is sheared so that the wind velocity will vary with height. A CFD simulation has been conducted to compare the aerodynamic characteristics of a DrivAer model, in fastback and squareback form, subject to a crosswind flow, with and without shear. The yaw simulation has been carried out at a yaw angle of 10° and with one shear flow exponent. It is shown that the car experiences almost identical forces and moments in the two cases when the mass flow in the crosswind over the height of the car is similar. Load distributions are presented for the two cases. The implications for wind averaged drag are discussed.
Technical Paper

The Psychological and Statistical Design Method for Co-Creation HMI Applications in the Chinese Automotive Market

2017-03-28
2017-01-0650
The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
Journal Article

The Effect of Passive Base Ventilation on the Aerodynamic Drag of a Generic SUV Vehicle

2017-03-28
2017-01-1548
Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

2016-09-27
2016-01-8029
A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Technical Paper

Numerical Simulations of a GDI Engine Flow Using LES and POD

2016-04-05
2016-01-0598
This paper presents the findings from a numerical study of a gasoline direct injection engine flow using the Large Eddy Simulation (LES) modelling technique. The study is carried out over 30 successive engine cycles. The study illustrates how the more simple but robust Smagorinsky LES sub-grid scale turbulence model can be applied to a complex engine geometry with realistic engineering mesh size and computational expense whilst still meeting the filter width requirements to resolve the majority of large scale turbulent structures. Detailed description is provided here for the computational setup, including the initialisation strategy. The mesh is evaluated using a turbulence resolution parameter and shows the solution to generally resolve upwards of 80% of the turbulence kinetic energy.
Technical Paper

Aerodynamic Side Forces on Passenger Cars at Yaw

2016-04-05
2016-01-1620
Side force has an influence on the behaviour of passenger cars in windy conditions. It increases approximately linearly with yaw angle over a significant range of yaw for almost all cars and the side force derivative, (the gradient of side force coefficient with yaw angle), is similar for vehicles of a given category and size. The shape factors and components which affect side force for different vehicle types are discussed. The dominant influence on side force, for most cars, however, is shown to be the vehicle height which is consistent with slender wing theory if the car and its mirror image are considered. This simple theory is shown to apply to 1-box and 2- box shapes, covering most MPVs, hatchbacks and SUVs, but does not adequately represent the side forces on notchback and fastback car shapes. Data from simple bodies is used to develop a modification to the basic theory, which is applied to these vehicle types.
Technical Paper

Design for 6 Sigma Application in Engine System Integration

2015-09-29
2015-01-2864
With stringent emission regulations, many subsystems that abate engine tailpipe-out emissions become a necessary part for engines. The increased level of complexity poses technical challenges for the quality and reliability for modern engines. Among the spectrum of quality control methodologies, one conventional methodology focuses on every component's quality to ensure that the accumulative deviation is within predetermined limits. This conventional methodology tightens the component tolerance during the manufacturing process and typically results in increased cost. Another conventional methodology that is on the other side of the spectrum focuses on tailoring an engine calibration solution to offset the manufacturing differences. Although the tailored engine calibration solution reduces manufacturing cost for components, it increases the development and validation cost for engines. Given the cost and time constraints, system integration plays an important role in engine development.
Technical Paper

Automatic PI Controller Calibration Optimization using Model-Based Calibration Approach

2015-09-01
2015-01-1989
Model-based calibration (MBC) is a systematic method to calibrate an engine control unit (ECU) system. Due to the working principle of MBC, it is only being used for steady-state systems (time independent models). This limits the use of MBC; because an ECU contains statistical and dynamical systems. Due to the limitations of MBC, dynamical systems require manual tuning which may be time-consuming. With the increasing popularity in hybrid and electrical vehicle systems, most of them rely on dynamical systems. Therefore, MBC is about to be superseded by manual parameterization methods. Remarkably, MBC is not limited to the steady state systems. It can be achieved by separating the time factor of a system and extracting the statistical data from a time series measurement. Typically, MBC model is conceived as the representation of a system plant (i.e.: air path, fuel path, mean value engine model). As a matter of fact, MBC model is not limited to identification of system plant.
X