Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of a Turbocharged Single-Cylinder Two-Stroke SI Engine Concept

2021-04-06
2021-01-0642
Power dense internal combustion engines (ICEs) are interesting candidates for onboard charging devices in different electric powertrain applications where the weight, volume and price of the energy storage components are critical. Single-cylinder naturally aspirated two-stroke spark-ignited (SI) engines are very small and power dense compared to four-stroke SI engines and the installation volume from a single cylinder two-stroke engine can become very interesting in some concepts. During charged conditions, four-stroke engines become more powerful than naturally aspirated two-stroke engines. The performance level of a two-stroke SI engines with a charging system is less well understood since only a limited number of articles have so far been published. However, if charging can be successfully applied to a two-stroke engine, it can become very power dense.
Technical Paper

Modelling of Hybrid Electric Vehicle Powertrains - Factors That Impact Accuracy of CO₂ Emissions

2019-01-15
2019-01-0080
Modelling is widely used for the development of hybrid electric vehicle (HEV) powertrain technologies, since it can provide accurate prediction of fuel consumption and CO₂ emissions, for a fraction of the resources required in experiments. For comparison of different technologies or powertrain parameters, the results should be accurate relative to each other, since powertrains are simulated under identical model details and simulation parameters. However, when CO₂ emissions of a vehicle model are simulated under a driving cycle, significant deviances may occur between actual tests and simulation results, compromising the integrity of simulations. Therefore, this paper investigates the effects of certain modelling and simulation parameters on CO₂ emission results, for a parallel HEV under three driving cycles (NEDC, WLTC and RTS95 to simulate real driving emissions (RDE)).
Technical Paper

Evaporation of Gasoline-Like and Ethanol-Based Fuels in Hollow-Cone Sprays Investigated by Planar Laser-Induced Fluorescence and Mie Scattering

2011-08-30
2011-01-1889
The evaporation of different fuels and fuel components in hollow-cone sprays at conditions similar to those at stratified cold start has been investigated using a combination of planar laser-induced fluorescence (LIF) and Mie scattering. Ketones of different volatility were used as fluorescent tracers for different fuel components in gasoline-like model fuels and ethanol-based fuels. LIF and Mie images were compared to evaluate to what extent various fuel components had evaporated and obtained a spatial distribution different from that of the liquid drops, as a function of fuel temperature and time after start of injection. A selective and sequential evaporation of fuel components of different volatility was found.
X