Refine Your Search

Topic

Author

Search Results

Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

Constraint-based Modeling of Fuel-spray Boundary Flow Fields under Sub-cooled and Flash-boiling Conditions

2024-04-09
2024-01-2621
The continuous improvement of spark-ignition direct-injection (SIDI) engines is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. The intricate interaction between transient spray behavior and the ambient flow field is important to unveil the airflow dynamics during the spray injection process. This study investigates the fuel-spray boundary interactions under different superheated conditions by analyzing the ambient flow field pattern with constraint-based modeling (CBM). In the experimental setup, superheated conditions are facilitated by adjusting different fuel temperatures and ambient pressures. By adding the tracer particles containing Rhodamine 6G to the ambient air, the combined diagnostic of fluorescent particle image velocimetry (FPIV) and Mie-scattering is implemented to measure the velocity distribution and flow trajectory of the air surrounding the spray formation and propagation.
Technical Paper

Shock Waves in Narrow Channels and Their Applications for High-Efficiency Unsteady Wave Engines

2017-09-19
2017-01-2043
Reducing the scale of the power engines, pose problems that are not encountered at large scale. Several effects, which are negligible at large scale, prove to dominate these viscous forces driven flows. Particularly, it is useful to investigate unsteady machines at small scales when subject to pressure waves. In this paper, the effects of scale on the propagation of shock waves in narrow shock tubes are studied using analytical and numerical modeling approaches. It is discussed how the size scale can become a decisive factor in governing the behavior of these small-scale devices. The results, in agreement with previous studies, suggest that the wall viscous stresses and heat conduction lead to deviation in flow characteristics compared to ideal shock wave behaviors observed in larger scales. The numerical results show shock-wave attenuation along the length of a narrow shock tube, in accordance with the developed analytical models.
Technical Paper

Two-Stage Wave Disk Engine Concept and Performance Prediction

2017-09-19
2017-01-2046
The Wave Disk Engine (WDE) is a novel engine that has the potential for higher efficiency and power density of power-generation systems. A recent version of wave disk engine architecture known as the two-stage WDE has been studied to address existing challenges of an existing WDE. After describing the engine operation, a cold air-standard thermodynamic model supporting the physical phenomena occurring inside the device is introduced to evaluate performance of the engine. The developed model is general and does not depend on the shape of the wave rotor, it can be applied to radial and axial combustion wave rotors integrated with turbomachinery devices. The analysis starts with predicting internal waves propagating inside the channels of the engine and linking various flow states to each other using thermodynamics relationships. The goal is to find analytical expressions of work output and efficiency in terms of known pressure and temperature ratios.
Technical Paper

The Development of a Small Restricted Turbocharged Racecar Engine

2016-11-08
2016-32-0061
This paper summarized the development methodology and technical experiences on Formula Student racecar engines acquired by Jilin University from 2011 to 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and were modified to turbocharged engines which met the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple research projects have been conducted surrounding the turbocharging technology. These research projects have covered multiple areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the tuning and control of the boost pressure as well as the design of the lubrication system for the turbocharger, etc.
Journal Article

The Influence of Diesel End-of-Injection Rate Shape on Combustion Recession

2015-04-14
2015-01-0795
The effect of the shape of the EOI was investigated through a pressure-modulated injection system in order to improve the understanding of the last portion of the traditional diesel diffusion combustion process. Here, the combustion recession at EOI is when the combustion of a mixing controlled diesel jet recedes backwards toward the fuel injector nozzle orifice. Combustion recession was observed using combustion luminosity imaging filtered at 309 nm to capture OH* chemiluminescence and 430 nm to capture CH* chemiluminescence, although soot Natural Luminosity (NL) will also be visible in these measurements. Experimental spray vessel results show that for relatively slow EOI decelerations below 1 ×106 to 2 ×106 m/s2, combustion strongly recesses completely back to the nozzle in both OH* and CH*/NL imaging. 1-D jet mixing calculations add support that this strong recession is indeed fuel rich.
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Combustion Modeling of Conventional Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulations

2008-04-14
2008-01-0958
A general combustion model, in the context of large eddy simulations, was developed to simulate the full range of combustion in conventional diesel-type and HCCI-type diesels. The combustion model consisted of a Chemkin sub-model and an Extended Flamelet Time Scale (EFTS) sub-model. Specifically, Chemkin was used to simulate auto-ignition process. In the post-ignition phase, the combustion model was switched to EFTS. In the EFTS sub-model, combustion was assumed to be a combination of two elementary combustion modes: homogeneous combustion and flamelet combustion. The combustion index acted as a weighting factor blending the contributions from these two modes. The Chemkin sub-model neglected the subgrid scale turbulence-chemistry interactions whereas the EFTS model took them into account through a presumed PDF approach. The model was used to simulate an early injection mode of a Cummins DI diesel engine and a mode of a Caterpillar DI diesel engine.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations

2007-04-16
2007-01-0159
A new Computational Fluid Dynamics (CFD) code has been developed in order to overcome the deficiencies of traditional grid generation and mesh motion methods. The new code uses a modified cut-cell Cartesian technique that eliminates the need for the computational grid to coincide with the geometry of interest. The code also includes state-of-the-art numerical techniques and sub-models for simulating the complex physical and chemical processes that occur in engines. Features such as shared and distributed memory parallelization, a multigrid pressure solver and user-specified grid embedding allow for efficient simulations while maintaining the grid resolution necessary for accurate engine modeling. In addition, a new Adaptive Grid Embedding (AGE) technique has been developed and implemented. Sub-models for turbulence, spray injection, spray breakup, liquid drop dynamics, ignition, combustion and emissions are also included in the code.
Technical Paper

Development of Fuel Consumption Standards for Chinese Light-Duty Vehicles

2005-04-11
2005-01-0534
To restrain the phenomenal increase in oil consumption in China, the Chinese government called for measures to reduce oil consumption of the road transportation sector through adopting vehicle fuel consumption standards. This paper describes the development of China's first set of fuel consumption standards for light-duty passenger vehicles. The adopted standards cover M1 class vehicles, which, according to European definition (and adopted by China), include passenger cars, minivans, and sports utility vehicles (SUVs). In particular, we present the goal, technical background, structure, and values of the adopted standards. We also present their potential effect on oil use reduction. The standards are set in liters of fuel consumption per 100 km for individual vehicle weight categories. The standards are maximum fuel consumption values for given vehicle weight categories.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

Caterpillar Automatic Code Generation

2004-03-08
2004-01-0894
Automatic code generation from models is actively used at Caterpillar for powertrain and machine control development. This technology was needed to satisfy the industry's demands for both increased software feature content, and its added complexity, and a short turn-around time. A pilot development effort was employed initially to roll out this new technology and shape the deployment strategy. As a result of a series of successful projects involving rapid prototyping and production code generation, Caterpillar will deploy MathWorks modeling and code generation products as their department-wide production development capability. The data collected indicated a reduction of person hours by a factor of 2 to 4 depending on the project and a reduction of calendar time by a factor of greater than 2. This paper discusses the challenges, results, and lessons learned, during this pilot effort from the perspectives of both Caterpillar and The MathWorks.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry

2003-03-03
2003-01-1043
Recent measurements by Siebers et al. have shown that the flame of a high pressure Diesel spray stabilizes under quiescent conditions at a location downstream of the fuel injector. The effects of various ambient and injection parameters on the flame “lift-off” length have been investigated under typical Diesel conditions in a constant-volume combustion vessel. In the present study, the experiments of Siebers et al. have been modeled using a modified version of the KIVA-3V engine simulation code. Fuel injection and spray breakup are modeled using the KH-RT model that accounts for liquid surface instabilities due to the Kelvin-Helmholtz and Rayleigh-Taylor mechanisms. Combustion is simulated using Convergent Thinking's recently developed detailed transient chemistry solver (SAGE) that allows for any number of chemical species and reactions to be modeled.
Technical Paper

Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

2002-03-04
2002-01-1158
A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NOx emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NOx emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NOx through controlled enhancement of in-cylinder mixing.
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

2001-08-20
2001-01-2482
This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

Overview of Diesel Emission Control-Sulfur Effects Program

2000-06-19
2000-01-1879
This paper describes the results of Phase 1 of the Diesel Emission Control - Sulfur Effects (DECSE) Program. The objective of the program is to determine the impact of fuel sulfur levels on emissions control systems that could be used to lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from vehicles with diesel engines. The DECSE program has now issued four interim reports for its first phase, with conclusions about the effect of diesel sulfur level on PM and total hydrocarbon (THC) emissions from the high-temperature lean-NOx catalyst, the increase of engine-out sulfate emissions with higher sulfur fuel levels, the effect of sulfur content on NOx adsorber conversion efficiencies, and the effect of fuel sulfur content on diesel oxidation catalysts, causing increased PM emissions above engine-out emissions under certain operating conditions.
X