Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modeling n-dodecane Spray Combustion with a Representative Interactive Linear Eddy Model

2017-03-28
2017-01-0571
Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
Technical Paper

A Representative Interactive Linear Eddy Model (RILEM) for Non-Premixed Combustion

2015-04-14
2015-01-0390
To further improve the efficiency and emissions profiles of internal combustion engines, many new combustion concepts are currently being investigated. Examples include homogeneous charge compression ignition (HCCI), stratified charge compression ignition (SCCI), lean stratified premixed combustion, and the use of high levels of exhaust gas recirculation (EGR) in diesel engines. The typical combustion temperatures in all of these concepts are lower than those in traditional spark ignition or diesel engines. Most of the combustion models that are currently used in computational fluid dynamics (CFD) simulations were developed to describe either premixed or non-premixed combustion under the assumption of fast chemistry.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Technical Paper

The Psychological and Accident Reconstruction “Thresholds” of Drivers' Detection of Relative Velocity

2014-04-01
2014-01-0437
Relative velocity detection thresholds of drivers are one factor that determines their ability to avoid rear-end crashes. Laboratory, simulator and driving studies show that drivers could scale relative velocity when it exceeded the threshold of about 0.003 rad/sec. Studies using accident reconstruction have suggested that the threshold may be about ten times larger. This paper discusses this divergence and suggests reasons for it and concludes that the lower value should be used as a true measure of the psychological threshold for detection of relative velocity.
Journal Article

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding with and without Adhesives

2013-04-08
2013-01-1017
Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in broader applications of Mg in automotive body construction. Ultrasonic spot welding (USW) has been demonstrated successfully to join Mg to steel and to achieve strong joints. In this study, corrosion test of ultrasonic spot welds between 1.6 mm thick Mg AZ31B-H24 and 0.8 mm thick galvanized mild steel, without and with adhesive, was conducted. Adhesive used was a one-component, heat-cured epoxy material, and was applied between overlapped sheets before USW. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the 0.5% sodium chloride (NaCl) bath, a constant humidity environment, and a drying period. Lap shear strength of the joints decreased with the cycles of corrosion exposure. Good joint strengths were retained at the end of 30-cycle test.
Technical Paper

Technical Assessment of Emission and Fuel Consumption Reduction Potential from Two and Three Wheelers in India

2013-01-09
2013-26-0050
The large fleet share and rapid growth of two and three wheeler vehicles in India means that careful attention must be paid to reducing emissions and fuel consumption from these vehicles. Emission standards and emission control technologies employed in passenger vehicles have not fully migrated to two and three wheelers. Fuel economy standards and advanced fuel efficient technologies, which offer great potential for reducing sector energy consumption, have also not been implemented for this important mode of transportation. This paper contains an overview of the engine technology changes and after-treatment systems being employed by Indian two and three-wheeler manufacturers to meet the Bharat Stage-III emission standards. An assessment of technical options to meet future emission standards is discussed. Adoption of evaporative emissions and on-board diagnostic systems technologies are discussed as well.
Technical Paper

The HCCI Concept and Control, Performed with MultiAir Technology on Gasoline Engines

2011-09-11
2011-24-0026
The introduction of MultiAir technology [8] has had a strong impact on engine performance, fuel consumption, emissions and control. This technology, intended at first for gasoline engines and applied only on intake valves, is aiming at the reduction of engine breathing losses and, as a consequence, reduction of pollutant emissions and fuel consumption, together with an improvement of maximum intake efficiency. Further positive effects of MultiAir technology have been a significant improvement of Low End Torque, engine driveability (“fun-to-drive” index) and other operating conditions (e.g. idle control). Current development of MultiAir technology is focusing on a better management of hot EGR (Exhaust Gas Recirculation), still acting only on the intake side, although with specifically designed valve lift profiles. This application of MultiAir technology is pushing gasoline engines towards new levels of performance improvements.
Journal Article

On the Premixed Phase Combustion Behavior of JP-8 in a Military Relevant Single Cylinder Diesel Engine

2011-04-12
2011-01-0123
Current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility requirements of the particular ground vehicle in question. In either case, such engines traditionally have been calibrated using North American diesel fuel (DF-2) and Jet Propellant 8 (JP-8) compatibility wasn't given much consideration since any associated power loss due to the lower volumetric energy density was not an issue for most applications at then targeted climatic conditions. Furthermore, since the genesis of the ‘one fuel forward policy’ of using JP-8 as the single battlefield fuel there has been limited experience to truly assess fuel effects on diesel engine combustion systems until this decade.
Technical Paper

Brake Dynamometer Test Variability - Analysis of Root Causes

2010-10-10
2010-01-1697
Modern project management including brake testing includes the exchange of reliable results from different sources and different locations. The ISO TC22/SWG2-Brake Lining Committee established a task force led by Ford Motor Co. to determine and analyze root causes for variability during dynamometer brake performance testing. The overall goal was to provide guidelines on how to reduce variability and how to improve correlation between dynamometer and vehicle test results. This collaborative accuracy study used the ISO 26867 Friction behavior assessment for automotive brake systems. Future efforts of the ISO task force will address NVH and vehicle-level tests. This paper corresponds to the first two phases of the project regarding performance brake dynamometer testing and presents results, findings and conclusions regarding repeatability (within-lab) and reproducibility (between-labs) from different laboratories and different brake dynamometers.
Technical Paper

Simulation studies concerning a Fuel Cell Hybrid Bus

2009-10-06
2009-36-0402
A hybrid electric vehicle simulation tool (IBZ-Simulator) has been developed at the Fuel Cell Institute of the University of Applied Sciences Esslingen to study the fuel economy potential of a Fuel Cell hybrid urban bus. In this paper, the fundamental architecture of the FC urban buses was described, as well as the control strategy to manage the power flow between the different elements of the drive train. A comparison of the hybrid with the conventional type and ICE-hybrid type is performed, and important factors relating to the vehicle efficiency (accessory loads, vehicle mass, Fuel Cell system ramping rate and battery capacity) were assessed. The using of supercapacitor (or ultracapacitors) as peak power buffer has been investigated.
Technical Paper

Urban Air Quality Improvements by Means of Vehicular Diesel Particle Filters

2008-04-14
2008-01-0336
The project objective was to investigate the ultrafine solid particle emissions of the prevalent traffic, by performing field measurements at an urban traffic artery in Zurich/Switzerland. Subsequently, various scenarios were postulated to assess the potential of the diesel particle filters (DPF) to improve curbside air quality. Soot aerosols are known to be carcinogenic [1]. If all heavy-duty diesel vehicles were equipped with DPFs, then the number of particles emitted from the entire vehicle fleet could be reduced by 75 to 80%. For PM10, the curtailment scope is considerably lower, around 20%, because more than half of those emissions are not from the exhaust and therefore would not be filtered.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Effect of an Oxidation Catalyst on Exhaust Emissions of a DI Diesel Engine Operating with Fumigation of the Intake Air with Superheated Steam

2002-05-06
2002-01-1727
An oxidation catalyst was fitted on a DI diesel engine for an experimental study involving an oxidation catalyst and the use of superheated steam for fumigating the intake air. Results are compared with that of the influence of low level of fumigation of the intake air with superheated diesel fuel. Exhaust emissions of NOx, CO, UHC, TPM, SOF and Carbon were measured and quantified on upstream and downstream of a low light off temperature (250 °C) oxidation catalyst. The technique used an electric vaporizer for producing superheated steam and prevaporised superheated diesel fumes at 350 °C, respectively. A low emissions version of Perkins 4-236 engine with squish lip piston was run both with and without fumigation at two speeds 1200 rpm and 2200 rpm. Roughly covering both city and highway running conditions.
Technical Paper

Effect of an Oxidation Catalyst on Exhaust Emissions of a DI Diesel Engine Operating with a Partial Fumigation of the Intake Air with Fuel

2002-05-06
2002-01-1726
Results showed the influence of the oxidation catalyst on exhaust emissions from a DI diesel engine due to the partial premixing, fumigation of the intake air with diesel fuel. Exhaust emissions of NOx, CO, UHC, TPM, SOF and Carbon were measured and quantified on upstream and downstream of a low light off temperature (250 °C) oxidation catalyst. Two methods of diesel fumigation of the intake air with fuel were used. The difference between these two methods was the degree of premixing of diesel fuel with the intake air. The first technique used a high-pressure fine diesel spray onto a glow plug and the second technique used an electric vaporizer for prevaporised superheated diesel fumes at 350 °C. A low emissions version of Perkins 4-236 engine with squish lip piston was run both with and without fumigation at two speeds 1200 rpm and 2200 rpm. Roughly covering both city and highway running conditions.
Technical Paper

The Influence of Residual Stresses on the Susceptibility to Hydrogen Embrittlement in Hardened Steel Components Subjected to Rolling Contact Conditions

2002-03-19
2002-01-1412
A review of many years of published work has shown that hydrogen embrittlement can occur under rolling contact conditions. Breakdown of lubrication and contamination with water have been cited as the probable sources of atomic hydrogen. In this paper, a unique fracture morphology is identified and the mechanism of the fracture progression from initiation to final catastrophic failure is proposed. Development of beneficial residual compressive stress near the contacting surfaces is one approach used to avoid this type of failure. Several alternative methods capable of developing a more desirable stress distribution will be discussed.
Technical Paper

NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen

2001-11-01
2001-28-0048
This numerical study examines the chemical-kinetics mechanism responsible for EGR NOx reduction in standard engines. Also, it investigates the feasibility of using EGR alone in hydrogen-air and methanol-air combustion to help generate and retain the same radicals previously found to be responsible for the inducement of the autoignition (in such mixtures) in IC engines with the SONEX Combustion System (SCS) piston micro-chamber. The analysis is based on a detailed chemical kinetics mechanism (for each fuel) that includes NOx production. The mechanism for H-air-NOx combustion makes use of 19 species and 58 reactions while the methanol-air-NOx mechanism is based on the use of 49 species and 227 reactions. It was earlier postulated that the combination of thermal control and charge dilution provided by the EGR produces an alteration in the combustion mechanisms (for both the hydrogen and methanol cases) that lowers peak cycle temperatures-thus greatly reducing the production of NOx.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Interpreting Remote Sensing NOx Measurements: at Low Load near Chicago 1997-1999, and at High and Low Load Sites on the Same Ramp in Phoenix, 1999

2001-09-24
2001-01-3640
Remote sensing nitric oxide (NO) measurements are difficult to analyze because load varies among on-road vehicles measured by remote sensing and NO emissions are dependent on load. Remote sensing NO measurements were made on passenger cars in 1997, 1998, and 1999 in Chicago, IL at a site where few vehicles had loads greater than those encountered in the FTP. Passenger car NO emissions could be modeled by an equation with an age term and a load term for measurements made under moderate load. Onset of decreasing NO emissions with increasing load was observed to occur at lower load for older technology vehicles. Light duty vehicles were measured by remote sensing at two sites on the same ramp in Phoenix, AZ. A large proportion of the vehicles at one of the sites was under loads far in excess of those experienced in the FTP. NO could not be characterized by a single valued function of age and load for both Phoenix sites even though the fleet at the two sites was very similar.
Technical Paper

Fatigue Technology in Vehicle Development

2001-03-05
2001-01-4081
Modern approaches to durability assurance in ground vehicle design are reviewed in the context of recent developments in computer-based analytical and experimental tools for use by designers and development engineers. Examples, using an automotive wheel assembly, are presented to illustrate the application of fatigue analysis in product development. Major challenges associated with the linking of various design tools into integrated networks appropriately configured for industrial problem solving are discussed along with an assessment of the potential benefits to be gained from such integration.
Technical Paper

Advanced Power Sources for a New Generation of Vehicles

2000-04-02
2000-01-1528
The U.S. Department of Energy (DOE) and the U.S. automotive industry are collaborating on research and development of advanced compression ignition direct injection (CIDI) engine technology and polymer electrolyte membrane (PEM) fuel cells for automotive applications. Under the auspices of the Partnership for a New Generation of Vehicles (PNGV), the partners are developing technologies to power an automobile that can achieve up to 80 miles per gallon (mpg), while meeting customer needs and all safety and emissions requirements. Research on enabling technologies for CIDI engines is focusing on advanced emissions control to meet the proposed stringent Environmental Protection Agency emissions standards for oxides of nitrogen (NOx) and particulate matter (PM) in 2004, while retaining the high efficiency and other traditional advantages of CIDI engines.
X