Refine Your Search

Topic

Author

Search Results

Technical Paper

Innovative Piston Design Performance for High Efficiency Stoichiometric Heavy Duty Natural Gas Engine

2023-04-11
2023-01-0288
Internal combustion engines will continue to be the leading power-train in the heavy-duty, on-highway sector as technologies like hydrogen, fuel cells, and electrification face challenges. Natural gas (NG) engines offer several advantages over diesel engines including near zero particle matter (PM) emissions, lower NOx emissions, lower capital and operating costs, availability of vast domestic NG resources, and lower CO2 emissions being the cleanest burning of all hydrocarbons (HC). The main limitation of this type of engine is the lower efficiency compared to diesel counterparts. Addressing the limitations (knock and misfire) for achieving diesel-like efficiencies is key to accomplishing widespread adoption, especially for the US market. With the aim to achieve high brake thermal efficiency (BTE), three (3) computational fluid dynamics (CFD) optimized pistons with three different compression ratios (CR) have been tested.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Technical Paper

Engine Mounted Oil Cooler 3D CFD CHT Analysis for Predicting Thermal Performance

2021-09-22
2021-26-0351
This paper describes steady state, computationally rigorous, three-dimensional conjugate heat transfer 3D CFD analysis of an oil cooler. Thermal performance of an oil cooler is very significant from engine oil consumption, bearings performance etc. In an engine water jacket, coolant flows around and through the oil cooler making the flow three dimensional. Therefore, demanding the need of a 3D CFD analysis for capturing all the flow and heat transfer aspects and thereby accurate prediction of thermal performance. An oil cooler contains intricate turbulators in flow paths and have dimensions varying from as small as 0.25 mm to as large as 350 mm, therefore making the meshing and solution a formidable task. In current work an oil cooler with all the intricate details is modelled in a commercial CFD code. Objective is to develop a solution approach which can predict thermal performance of an oil cooler in an accurate way.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Multi-Dimensional Spark Ignition Model with Distributed Energy Input and Integrated Circuit Model

2021-04-06
2021-01-0405
A multi-dimensional model of the spark ignition process for SI engines was developed as a user defined function (UDF) integrated into the commercial engine simulation software CONVERGE™ CFD. For the present research, the model simulated spark plasma development in an inert flow environment without combustion. The UT model results were then compared with experiments. The UT CONVERGE CFD-based model includes an electrical circuit sub-model that couples the primary and secondary sides of an inductive ignition system to predict arc voltage and current, from which the transient delivered electrical energy to the gap can be determined. Experimentally measured values of the arc resistance and spark plug calorimeter measurements of the efficiency of electrical to thermal energy conversion in the gap were used to determine the thermal energy delivered to the gas in the spark gap for different pressures and gap distances.
Technical Paper

Experimental Study of Impact of Ash and Soot on Tail Pipe Particle Number

2019-04-02
2019-01-0976
Tailpipe particle number (PN) emission limits for heavy-duty diesel engines have been introduced as part of the off-highway Stage V standards. To meet the required limits a diesel particulate filter (DPF) with high filtration efficiency is required. The DPF relies on formation of a soot cake layer on the channel walls to achieve this high filtration efficiency. Off highway Stage V certification cycles are significantly higher in temperature than their on-highway counterparts, leading to difficulty in creating and maintaining a soot cake in the DPF. Hence for these applications meeting particle number requirements is challenging. To meet the high filtration efficiency requirements the DPF will have to reduce mean pore size, pore standard deviation, and increase wall thickness, in turn increasing backpressure, which results in a fuel consumption penalty. Another option is to evaluate the impact of temperature stable ash accumulation on DPF filtration efficiency.
Technical Paper

Catalyst Sulfur Poisoning and Recovery Behaviors: Key for Designing Advanced Emission Control Systems

2017-01-10
2017-26-0133
Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Fan Shroud Optimization Using Adjoint Solver

2016-09-27
2016-01-8070
Fan and fan-shroud design is critical for underhood air flow management. The objective of this work is to demonstrate a method to optimize fan-shroud shape in order to maximize cooling air mass flow rates through the heat exchangers using the Adjoint Solver in STAR-CCM+®. Such techniques using Computational Fluid Dynamics (CFD) analysis enable the automotive/transport industry to reduce the number of costly experiments that they perform. This work presents the use of CFD as a simulation tool to investigate and assess the various factors that can affect the vehicle thermal performance. In heavy-duty trucks, the cooling package includes heat exchangers, fan-shroud, and fan. In this work, the STAR-CCM+® solver was selected and a java macro built to run the primal flow and the Adjoint solutions sequentially in an automated fashion.
Technical Paper

Investigation of Aerodynamic Influence on Truck Platooning

2015-09-29
2015-01-2895
This paper investigates the aerodynamic influence of multiple on-highway trucks in different platooning configurations. Complex pressure fields are generated on the highways due to interference of multiple vehicles. This pressure field causes an aerodynamic drag to be different than the aerodynamic drag of a vehicle in a no-traffic condition. In order to study the effect of platooning, three-dimensional modeling and numerical simulations were performed using STAR-CCM+® commercial Computational Fluid Dynamics (CFD) tool. The aerodynamic characteristics of vehicles were analyzed in five different platooning configurations with two and three vehicles in single and multiple lanes. A significant Yaw Averaged Aerodynamic Drag (YAD) reduction was observed in both leading and trailing vehicles. YAD was based on the average result of three different yaw angles at 0°, −6° and 6°. In single-lane traffic, YAD reduction was up to 8% and 38% in leading and trailing vehicles, respectively.
Journal Article

Experimental and Modeling Study of Ash Impact on DPF Backpressure and Regeneration Behaviors

2015-04-14
2015-01-1063
One field-returned DPF loaded with a high amount of ash is examined using experimental and modeling approaches. The ash-related design factors are collected by coupling the inspection results from terahertz spectroscopy with a calibrated DPF model. The obtained ash packing density, ash layer permeability and ash distribution profile are then used in the simulation to assess the ash impact on DPF backpressure and regeneration behaviors. The following features have been observed during the simulation: 1 The ash packing density, ash layer permeability and ash distribution profile should be collected at the same time to ensure the accurate prediction of ash impact on DPF backpressure. Missing one ash property could mislead the measurement of the other two parameters and thus affects the DPF backpressure estimation. 2 The ash buildup would gradually increase the frequency for the backpressure-based active soot regeneration.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

2015-04-14
2015-01-1022
In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

SCR Architectures for Low N2O Emissions

2015-04-14
2015-01-1030
The high global warming potential of nitrous oxide (N2O) led to its inclusion in the list of regulated greenhouse gas (GHG) pollutants [1, 2]. The mitigation of N2O on aftertreatment catalysts was shown to be ineffective as its formation and decomposition temperatures do not overlap. Therefore, the root causes for N2O formation were investigated to enable the catalyst architectures and controls development for minimizing its formation. In a typical heavy-duty diesel exhaust aftertreatment system based on selective catalytic reduction of NOx by ammonia derived from urea (SCR), the main contributors to tailpipe N2O are expected to be the undesired reaction between NOx and NH3 over SCR catalyst and NH3 slip in to ammonia slip catalyst (ASC), part of which gets oxidized to N2O.
Journal Article

Validation and Design of Heavy Vehicle Cooling System with Waste Heat Recovery Condenser

2014-09-30
2014-01-2339
Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
Journal Article

Hydrocarbon Storage on Small-Pore Cu-Zeolite SCR Catalyst

2013-04-08
2013-01-0508
In this study we investigated the interaction of short- and long-chain hydrocarbons (HCs), represented by propene (C₃H₆) and n-dodecane (n-C₁₂H₂₆), respectively, with a state-of-the-art small-pore Cu-Zeolite SCR catalyst. By varying HC adsorption conditions, we determined that physisorption was the primary mechanism for some minor HC storage at low temperatures (≺ 200°C), while chemical transformation was involved in more substantial HC storage at higher temperatures (200-400°C). The latter was evidenced by the oxygen-dependent and thermally activated nature of the storage process, and further confirmed by the carbon-rich composition of the deposits. The nature of HC-derived deposits of different origins and amounts was further probed using the standard SCR reaction at kinetically challenging conditions (at 200°C), as well by ammonia adsorption/desorption experiments.
Journal Article

Axially Resolved Performance of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1084
In this work, an alternative method is proposed and validated for quantifying the axial performance of a state-of-the-art Cu zeolite SCR catalyst. Catalyst cores of a standard length, with varying lengths of wash-coated regions were used to axially resolve the functional performance of the SCR catalyst. This proposed method was validated by quantifying the catalyst entrance and exit effects, as well as the effect of non-uniform wash-coat loading densities. This method is less susceptible to some of the complications highlighted in the previous studies, such as flow uniformity between channels, as well as radiative heating effects, since the product gases are sampled across the entire monolith cross-section rather than through a single catalyst channel. The specific catalyst functions quantified include: NO and NH₃ oxidation, NH₃ storage capacity, as well as NOx conversion efficiency.
Technical Paper

Modeling of Dual Layer Ammonia Slip Catalysts (ASC)

2012-04-16
2012-01-1294
In recent years, ammonia slip catalysts (ASC) are being used downstream of an SCR system to minimize the ammonia slip. The dual-layer ASC is more attractive for its bi-functionality in reducing the ammonia and NOX emissions. It consists of two layers with the upper layer comprising a component with SCR functionality and the lower layer a PGM containing catalyst with oxidation functionality. Thus, both oxidation and SCR reactions take place in two different layers and are interlinked by the inter-layer mass transfer mechanism. In addition, adsorption and desorption kinetics between the gas and solid phases play a significant role. Mathematically, the overall system is a complex system of mass, momentum and energy transfer equations with temporal and spatial variables in both axial and radial directions. In this work, we focus on devising a suitable, computationally inexpensive model for such ASCs to be efficiently used for design, control and system optimization studies.
Technical Paper

Hydrocarbon Poisoning of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1096
The effects of propylene (C₃H₆) and dodecane (n-C₁₂H₂₆) exposure on the NH₃-based selective catalytic reduction (SCR) performance of two Cu-exchanged zeolite catalysts were investigated. The first sample was a model Cu/beta zeolite sample and the second a state-of-the-art Cu/zeolite sample, with the zeolite material characterized by relatively small pores. Overall, the state-of-the-art sample performed better than the model sample, in terms of hydrocarbon inhibition (which was reduced) and N₂O formation (less formed). The state-of-the-art sample was completely unaffected by dodecane at temperatures lower than 300°C, and only slightly inhibited (less than 5% conversion loss), for standard SCR, by C₃H₆. There was no evidence of coke formation on this catalyst with C₃H₆ exposure. The model sample was more significantly affected by hydrocarbon exposure. With C₃H₆, inhibition is associated with its partial oxidation intermediates adsorbed on the catalyst surface.
Technical Paper

High-Performance Grid Computing for Cummins Vehicle Mission Simulation: Architecture and Applications

2011-09-13
2011-01-2268
This paper presents an extension of our earlier work on Cummins Vehicle Mission Simulation (VMS) software. Previously, we presented VMS as a Windows based analysis tool to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. We have subsequently extended this VMS architecture to build a grid-computing platform to support high volume of simulation needs. The building block of the grid-computing version of VMS is an executable file that consists of vehicle and engine simulation models compiled using Real Time Workshop. This executable file integrates MATLAB and Simulink with Java, XML, and JDBC technologies and interacts with the MySQL database. Our grid consists of a cluster of twenty Linux servers with quad-core processors. The Sun Grid Engine software suite that administers this cluster can batch-queue and execute 80 simulations concurrently.
X