Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

HVAC Blower: a Steady State RANS Noise Prediction Method

2024-06-12
2024-01-2937
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces.
Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

A data driven approach for real-world vehicle energy consumption prediction

2024-04-09
2024-01-2870
Accurately predicting real-world vehicle energy consumption is essential for optimizing vehicle designs, enhancing energy efficiency, and developing effective energy management strategies. This paper presents a data-driven approach that utilizes machine learning techniques and a comprehensive dataset of vehicle parameters and environmental factors to create precise energy consumption prediction models. The methodology involves recording real-world vehicle data using data loggers to extract information from the CAN bus systems for ICE and hybrid electric, as well as hydrogen and battery fuel cell vehicles. Data cleaning and cycle-based analysis are employed to process the dataset for accurate energy consumption prediction. This includes cycle detection and analysis using methods from statistics and signal processing, and then pattern recognition based on these metrics.
Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Optimization of the IC Engine Piston Skirt Design Via Neural Network Surrogate and Genetic Algorithms

2024-04-09
2024-01-2603
Internal combustion (IC) engines still power most of the vehicles on road and will likely to remain so in the near future, especially for heavy duty applications in which electrification is typically more challenging. Therefore, continued improvements on IC engines in terms of efficiency and longevity are necessary for a more sustainable transportation sector. Two important design objectives for heavy duty engines with wet liners are to reduce friction loss and to lower the risks of cavitation damages, both of which can be greatly influenced by the piston-liner clearance and the design of the piston skirt. However, engine design optimization is difficult due to the nonlinear interactions between the key design variables and the design objectives, as well as the multi-physics and multi-scale nature of the mechanisms that are relevant to the design objectives.
Technical Paper

Numerical Simulation of Class 8 Tractor Trailer Geometries and Comparison with Wind Tunnel Data

2024-04-09
2024-01-2533
This article analyzes the aerodynamic performance of Class 8 tractor-trailer geometries made available by the Environmental Protection Agency (EPA) using CFD simulation. Large Eddy Simulations (LES) were carried out with the CFD package, Simerics-MP+. A Sleeper tractor and a 53-foot box trailer configuration was considered. The configuration featured a detailed underbody, an open-grille under-hood engine compartment, mirrors, and the radiator and condenser. Multiple tractor-trailer variants were studied by adding aerodynamic surfaces to the baseline geometries. These include tank fairings and side extenders for the cabins, two types of trailer skirts, and a trailer tail. The effect of these devices towards reducing the overall vehicle drag was investigated. Mesh generation was carried out directly on the given geometry, without any surface modifications, using Simerics’ Binary-Tree unstructured mesher.
Technical Paper

Performance Comparison Analysis between Biodiesel and Diesel over a Commercial DOC Catalyst

2024-04-09
2024-01-2707
Biodiesel is a promising alternative to traditional diesel fuel due to its similar combustion properties to diesel and lower carbon emissions on a well-to-wheel basis. However, combusting biodiesel still generates hydrocarbon (HC), CO, NOx and particulate matter (PM) emissions, similar to those from traditional diesel fuel usage. Therefore, aftertreatment systems will be required to reduce these emissions to meet increasingly stringent emission regulations to minimize the impact to the environment. Diesel oxidation catalysts (DOC) are widely used in modern aftertreatment systems to convert unburned HC and CO, to partially convert NO to NO2 to enhance downstream selective catalytic reaction (SCR) catalyst efficiency via fast SCR and to periodically clean-up DPF via controlled soot oxidation. In this work, we focus on the performance difference between biodiesel and diesel over a commercial DOC catalyst to identify the knowledge gap during the transition from diesel fuel to biodiesel.
Technical Paper

Sulfur Impact on Methane Steam Reforming over the Stoichiometric Natural Gas Three-Way Catalyst

2024-04-09
2024-01-2633
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover.
Technical Paper

3-D Multiphase Flow Simulation of Coolant Filling and Deaeration Processes in an Engine Coolant System

2024-01-16
2024-26-0310
The thermal performance of an engine coolant system is efficient when the engine head temperature is maintained within its optimum working range. For this, it is desired that air should not be entrapped in the coolant system which can lead to localized hot spots at critical locations. However, it is difficult to eliminate the trapped air pockets completely. So, the target is to minimize the entrapped air as much as possible during the coolant filling and deaeration processes, especially in major components such as the radiator, engine head, pump etc. The filling processes and duration are typically optimized in an engine test stand along with design changes for augmenting the coolant filling efficiency. However, it is expensive and time consuming to identify air entrapped locations in tests, decide on the filling strategy and make the design changes in the piping accordingly.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Technical Paper

An Investigation of Oil Supply Mechanisms to the Top of the Liner in Internal Combustion Engines

2023-09-29
2023-32-0031
Protecting the piston ring and liner interface is critical to the proper operation of internal combustion engines. Specifically, the dry region, which is the portion of the liner above the Top Dead Center (TDC) of the Oil Control Ring (OCR), needs proper lubrication to reduce wear and to maintain sustainability. However, the mechanisms by which oil is distributed to such region have not been investigated. This paper presents the first attempt to understand dry region lubrication by means of the oil-gas interaction below the top ring gap through a combination of experimental and modeling approaches. An optical engine with 2D Laser Induced Fluorescence (2D-LIF) technique was applied to visualize the oil flow below the top ring gap. It was observed that the two vortices downstream the top ring gap can cause oil bridging towards the liner, providing lubrication to the ring-liner interface.
Technical Paper

Mechanism for Internal Injector Deposits Formation in Heavy-duty Engines using Drop-in Fuels

2023-09-29
2023-32-0053
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

Correlation of Oil Originating Particle Emissions and Knock in a PFI HD SI Engine Fueled with Methanol

2023-08-28
2023-24-0036
A viable option to reduce global warming related to internal combustion engines is to use renewable fuels, for example methanol. However, the risk of knocking combustion limits the achievable efficiency of SI engines. Hence, most high load operation is run at sub-optimal conditions to suppress knock. Normally the fuel is a limiting factor, however when running on high octane fuels such as methanol, other factors also become important. For example, oil droplets entering the combustion chamber have the possibility to locally impact both temperature and chemical composition. This may create spots with reduced octane number, hence making the engine more prone to knock. Previous research has confirmed a connection between oil droplets in the combustion chamber and knock. Furthermore, previous research has confirmed a connection between oil droplets in the combustion chamber and exhaust particle emissions.
Technical Paper

Reactivity of Diesel Soot from 6- and 8-Cylinder Heavy-Duty Engines

2023-08-28
2023-24-0119
Increasing concern for air pollution together with the introduction of new types of fuels pose new challenges to the exhaust aftertreatment system for heavy-duty (HD) vehicles. For diesel-powered engines, emissions of particulate matter (PM) is one of the main drawbacks due to its effect on health. To mitigate the tailpipe emissions of PM, heavy-duty vehicles are since Euro V equipped with a diesel particulate filter (DPF). The accumulation of particles causes flow restriction resulting in fuel penalties and decreased vehicle performance. Understanding the properties of PM produced during engine operation is important for the development and optimized control of the DPF. This study has focused on assessing the reactivity of the PM by measuring the oxidation kinetics of the carbonaceous fraction. PM was sampled from two different heavy-duty engines during various test cycles.
Technical Paper

Development of a Laboratory Unit to Study Internal Injector Deposits Formation

2023-08-28
2023-24-0078
The formation of deposits in the fuel systems of heavy-duty engines, using drop-in fuels, has been reported in recent years. Drop-in fuels are of interest because they allow higher levels of alternative fuels to be blended with conventional fuels that are compatible with today’s engines. The precipitation of insolubles in the drop-in fuel can lead to clogging of fuel filters and internal injector deposits, resulting in increased fuel consumption and engine drivability problems. The possible mechanisms for the formation of the deposits in the fuel system are not yet fully understood. Several explanations such as operating conditions, fuel quality and contamination have been reported. To investigate injector deposit formation, several screening laboratory test methods have been developed to avoid the use of more costly and complex engine testing.
Technical Paper

Predictive Piston Cylinder Unit Simulation - Part II: Novel Methodology of Friction Simulation Validation Utilizing Floating-Liner Measurements

2023-04-11
2023-01-0415
The increasing demand for environmentally friendly and fuel-efficient transportation and power generation requires further optimization and minimization of friction power losses. With up to 50% of the overall friction, the piston cylinder unit (PCU) shows most potential within the internal combustion engine (ICE) to increase mechanical efficiency. Calculating friction of internal combustion engines, especially the friction contribution from piston rings and skirt, requires detailed knowledge of the dynamics and lubrication regime of the components being in contact. Part I of this research presents a successful match of simulated and measured piston inter-ring pressures at numerous operation points [1] and constitutes the starting point for the comparison of simulated and measured piston group friction forces as presented in this research.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Technical Paper

Model-Based Coordinated Steering and Braking Control for a Collision Avoidance Driver Assist Function

2023-04-11
2023-01-0678
ADAS (Advanced Driver Assistance System) functions can help the driver avoid accidents or mitigate their effect when they occur, and are pre-cursors to full autonomous driving (SAE defined as Level 4+). The main goal of this work is to develop a Model-Based system to actuate the Evasive Maneuver Assist (EMA) function. A typical scenario is the situation in which longitudinal Autonomous Emergency Braking (AEB) is too late and the driver has to adopt an evasive maneuver to avoid an object suddenly appearing on the road ahead. At this time, EMA can help improve the driver’s steering and braking operation in a coordinated way. The vehicle maneuverability and response performance will be enhanced when the driver is facing the collision. The function will additionally let the vehicle steer in a predetermined optimized trajectory based on a yaw rate set point and stabilize the vehicle. The EMA function is introduced with some analysis of benchmarking data.
X