Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Suppression of Soot Formation in Quasi-steady Diesel Spray Flame Produced by High-pressure Fuel Injection with Multi-orifice Nozzle

2019-12-19
2019-01-2270
The set-off length (also referred to as the “lift-off length”) is reduced by the re-entrainment of the burned gas by the backward flow surrounding a diesel spray jet produced by a multi-hole nozzle. In the present study, to estimate the equivalence ratio at the set-off length, a means of estimating the amount of burned gas that is re-entrained into the near-nozzle region of the diesel spray jet was established. The results revealed that the suppression of soot formation in quasi-steady diesel spray flames produced by a multi-hole nozzle and a high injection pressure is not attained by reducing the equivalence ratio at the set-off length. Analysis of the amount of soot along the spray axis using a two-color method revealed that the maximum soot amount position appears in a quasi-steady spray flame, after the collapse of the head vortex in which a dense soot cloud is formed. The maximum soot amount position does not change even if the injection pressure varies.
Journal Article

Next Improvement Potentials for Heavy-Duty Diesel Engine - Tailor the Fuel Injection System to the Combustion Needs

2017-03-28
2017-01-0705
Future diesel engine legislation Tier 4 / Stage V and EU6d demand further improvements to reduce CO2 while keeping the already low NOx emissions levels. For US trucks a more strict limit of 0.2 g/bhp-hr NOx emissions need to be achieved. In this trade-off, system costs and complexity of the after-treatment are defining the constraint in which the common rail fuel injection system layout has to be defined. The increase of rail pressure was in the past the major step to control the soot emissions in view of low engine-out NOx emissions by applying massive EGR. With the on-going development of NOx-aftertreatment by Selective Catalytic Reduction (SCR), conversion efficiencies of up to 97% allow to reduce the EGR usage and rail pressure usage. In that context, the steepness of injection rate, the nozzle flow rate and the injection pressure are remaining parameters to control the NOx emissions.
X