Refine Your Search

Topic

Search Results

Technical Paper

STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled Driving Automation

2024-04-09
2024-01-2643
Driving Automation Systems (DAS) are subject to complex road environments and vehicle behaviors and increasingly rely on sophisticated sensors and Artificial Intelligence (AI). These properties give rise to unique safety faults stemming from specification insufficiencies and technological performance limitations, where sensors and AI introduce errors that vary in magnitude and temporal patterns, posing potential safety risks. The Safety of the Intended Functionality (SOTIF) standard emerges as a promising framework for addressing these concerns, focusing on scenario-based analysis to identify hazardous behaviors and their causes. Although the current standard provides a basic cause-and-effect model and high-level process guidance, it lacks concepts required to identify and evaluate hazardous errors, especially within the context of AI. This paper introduces two key contributions to bridge this gap.
Technical Paper

Sensorless Control of a Brushless Motor for the ESC Unit

2023-04-11
2023-01-0452
In general, automatic braking uses an electric stability control (ESC) hydraulic unit that can automatically increase the hydraulic pressure in the wheel cylinder (hereinafter called wheel pressure), independent of the driver’s braking operation. The hydraulic unit should have sufficient pressure response to apply autonomous emergency braking (AEB). It was necessary for the hydraulic unit to have a high flow rate for the pressure response. To satisfy the performance requirements of the AEB, a brushless motor, which has a high maximum rotational speed and good response, is adopted for the hydraulic unit. Furthermore, sensorless control, which does not require a rotation angle sensor, has been developed so that the motor size can be small and common to conventional units. The developed sensorless control can switch the driving methods in three states: pre-rotation, low speed, and high speed.
Journal Article

Development of Inverter Drive Unit for Battery Electric Vehicle

2023-04-11
2023-01-0528
Toyota Motor Corporation has developed a new battery electric vehicle (BEV) on the dedicated e-TNGA platform for BEVs, which was designed to lower the center of gravity of the vehicle and increase body stiffness. In addition to a full-time 4WD system, another feature of this new BEV is its pleasurable driving experience. A new inverter drive unit was developed for this system. Unlike the previous inverter, the advantage of the new inverter is that it is small enough to be mounted inside the transaxle housing, thereby contributing to the availability of interior and luggage space. The temperature rise of the power semiconductors in the inverter was reduced considerably by the development of a new power semiconductor for BEVs. This enables a parallel layout of two power semiconductors instead of three. The components of the inverter were also downsized. A coreless current sensor was adopted, and capacitors were developed with significantly lower capacitance.
Technical Paper

Machine-Learned Emission Model for Diesel Exhaust On-Board Diagnostics and Data Flow Processor as Enabler

2021-12-17
2021-01-5108
Conventional methods of physicochemical models require various experts and a high measurement demand to achieve the required model accuracy. With an additional request for faster development time for diagnostic algorithms, this method has reached the limits of economic feasibility. Machine learning algorithms are getting more popular in order to achieve a high model accuracy with an appropriate economical effort and allow to describe complex problems using statistical methods. An important point is the independence from other modelled variables and the exclusive use of sensor data and actuator settings. The concept has already been successfully proven in the field of modelling for exhaust gas aftertreatment sensors. An engine-out nitrogen oxide (NOX) emission sensor model based on polynomial regression was developed, trained, and transferred onto a conventional automotive electronic control unit (ECU) and also proves real-time capability.
Technical Paper

Development of Fast Response Time PM Sensor

2020-04-14
2020-01-0390
Automotive manufacturers are working towards protecting the global environment by using filters to reduce particulate matter (PM) emissions from their vehicles. There is a growing demand for sensors that detect the small amounts of PM leaking through these filters, as they can aid in performing on-board diagnostics (OBD) and monitoring the function of these filters. Currently, vehicles predominantly use an electric resistance type PM sensor, which applies a voltage between electrodes, collects PM, and senses the generation of PM path. However, in response to tightening regulations on PM-OBD, the response time of the sensor needs to be optimized. Furthermore, the fast response time must not degrade the poisoning resistance in order to ensure durability. To shorten sensor response time, we have developed a 20 μm-gap electrode structure using a cross-section of laminated alumina sheets with printed electrodes, which can form PM paths at small PM amounts.
Technical Paper

Exhaust Gas Sensor with High Water Splash Resistant Layer for Lower Emission

2020-04-14
2020-01-0565
Increasingly stringent regulations call for the reduction of emissions at engine startup to purify exhaust gas and reduce the amount of CO2 emitted. Air-fuel ratio (A/F) sensors detect the composition of exhaust gas and provide feedback to control the fuel injection quantity in order to ensure the optimal functioning of the catalytic converter. Reducing the time needed to obtain feedback control and enabling the restriction-free installation of A/F sensors can help meet regulations. Conventional sensors do not activate feedback control immediately after engine startup as the combination of high temperatures and splashes of condensed water in the exhaust pipe can cause thermal shock to the sensor element. Moreover, sensors need to be installed near the engine to increase the catalyst reaction efficiency. This increases the possibility of water splash from the condensed water in the catalyst.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Technical Paper

Development of an Oil Degradation Sensor Based on Detection of Free Radicals

2019-12-19
2019-01-2299
This paper proposes an oil degradation sensor that informs the best time for oil replacement to achieve the right balance with oil conservation and engine protection. We found that free radicals in the engine oil generate by chain decomposition reactions of hydrocarbons by heat and the amount of them increases with an increase in running distance. Based on theoretical analysis and experiment results, the free radical concentrations have high correlations with pH and base number. The sensor using the principle of electron spin resonance (ESR) can measure the amount of free radical molecules in a non-contact method. The sensor successfully detected free radicals produced by the degradation of actual engine oil.
Technical Paper

Analysis of spray to spray interaction and smoke emission for diesel multiple injections and quick rising injection rate

2019-12-19
2019-01-2272
Diesel engines have smoke trade-offs with both NOx and combustion noise. Both the increment of air entrainment into the spray and deceleration of heat release rate slope which become quickly thanks to the increase of air entrainment are effective for overcoming the trade-off between smoke emission and combustion noise. In this study, effect of quick rising injection rate and pre-injection was focused as an enabler for the both. The mechanism of improvement in the trade-off caused by the quick rising injection rate and pre-injection was clarified by analyzing characteristics of spray and combustion, interaction of pre-injected spray to main-injected spray and behavior of smoke emission. Some visualization techniques were adapted to analysis of sprays and combustions. Spray momentum measurement was used for the air entrainment and mixture formation process analyzation.
Journal Article

Next Improvement Potentials for Heavy-Duty Diesel Engine - Tailor the Fuel Injection System to the Combustion Needs

2017-03-28
2017-01-0705
Future diesel engine legislation Tier 4 / Stage V and EU6d demand further improvements to reduce CO2 while keeping the already low NOx emissions levels. For US trucks a more strict limit of 0.2 g/bhp-hr NOx emissions need to be achieved. In this trade-off, system costs and complexity of the after-treatment are defining the constraint in which the common rail fuel injection system layout has to be defined. The increase of rail pressure was in the past the major step to control the soot emissions in view of low engine-out NOx emissions by applying massive EGR. With the on-going development of NOx-aftertreatment by Selective Catalytic Reduction (SCR), conversion efficiencies of up to 97% allow to reduce the EGR usage and rail pressure usage. In that context, the steepness of injection rate, the nozzle flow rate and the injection pressure are remaining parameters to control the NOx emissions.
Technical Paper

Improvement of the Robustness of the Common Rail System for the Fuel Diversification

2015-09-01
2015-01-1967
With the diesel emissions and fuel consumption regulations and laws being tightened up, Common Rail System (CRS), capable of accurate and high-pressure diesel fuel injection, has become very popular in the world, and this CRS market is expected to continue to grow in the future. As use of the CRS becomes widespread, CRS is supposed to be used in a wide variety of environment, e.g. bad fuel (for example, much dust [1] and/or water), which increases concerns of CRS reliability. In an attempt to cope with such bad fuel properties, CRS and Fuel collected from the market was investigated. And based on this result, a new test method was worked out to simulate fuel stresses in the market. This test method verified the improved design of CRS with enhanced fuel robustness. This paper describes the new test method and the fuel robustness-enhancing effect of CRS based on the test method.
Technical Paper

Concepts and Evolution of Injector for Common Rail System

2012-09-10
2012-01-1753
Diesel injection equipment is required to be more accurate and higher in pressure to meet the increasingly strict emission, fuel consumption regulations and higher engine performance. It also needs to achieve a number of requirements such as robustness against diversified market fuels, pressure maintenance characteristics in the idle stop system (ISS), easy installation to engine, etc. One of the key component to meet these demands is injector.
Technical Paper

Super-slim 2 Axes Automotive Accelerometer Using MEMS Technology

2009-04-20
2009-01-0636
We have developed a novel wafer process for capacitive sensing accelerometer using surface Micro Electrical Mechanical Systems (MEMS) technology and successfully applied to the fabrication process. Our new process combines with a single crystal SOI (Si on Insulator) wafer, high aspect ratio silicon etching and newly developed anhydrous HF/Alcohol etch process of silicon oxides. Although wet conditions such as HF/water etch occurs stiction of mobile structure, our anhydrous HF/Alcohol etch process technology occurs no stiction of mobile structures, because of gas phase (dry) process. In our process, we have achieved smaller-sized sensor chip compared to our conventional 2 axes accelerometer.
Technical Paper

A Stand-Alone Charging Management System to Improve Fuel Economy, Based on an Algorithm of Estimating Vehicle Motion

2008-10-20
2008-21-0045
Increased interest in global warming issues requires rapid improvements in reduction of CO2 emissions. The automotive industry is placing high importance on improving fuel economy performance across their entire product lines. Charging Management System is a necessary element towards fuel economy improvement. Many of today's charging management systems perform at least two important functions: improving efficiency based on vehicle motion, and detecting battery state of charge. These systems become more complicated as more components (i.e. generators, current sensors and ECU) and software are added. Therefore, it is difficult to develop charging management systems for an entire product line and difficult to retrofit the system for vehicles already in production. A stand-alone charging management system solves these issues. This system is independent of the other vehicle systems. The software for improving fuel economy is installed in the generator or current sensor.
Technical Paper

A Matrix Infrared Sensor System for Improving Thermal Comfort in Passenger Compartments

2008-04-14
2008-01-0835
Customers tend to require more comfortable climate control in vehicles. This paper is concern with a new infrared sensor that detects surface temperature at six separate locations, and a climate control system that incorporates the sensor. In a conventional system using an air temperature sensor and solar radiation sensor, climate conditions are usually controlled according to the thermal load. It is believed that more comfortable climate control can be realized by using an infrared sensor to detect passengers' surface temperature. The sensor consists of a lens, an IC with six thermopiles, a circuit and a case, and has been improved to detect in-cabin surface temperature accurately even under severe environmental conditions. The HVAC system controls the outlet air temperature and mode individually for each seat according to detected temperatures.
Technical Paper

The Advanced Diesel Common Rail System for Achieving a Good Balance Between Ecology and Economy

2008-01-09
2008-28-0017
At present, various efforts are being made in the industrial world to preserve the earth's environment. Automobile industry has to comply with the emission control regulations including NOx and PM and the requirement of reducing CO2 emission from the viewpoint of global warming protection and energy saving. In these situations, diesel engines having a high potential to reduce CO2 emission are attracting much attention. In order to enhance the potential of diesel to reduce CO2 while solving its problems (“slow, dirty, noisy”), common rail systems are vital. DENSO developed an advanced common rail system (CRS) that integrates fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa injection pressure. This paper describes the injection performance and effects of the 180MPa common rail system and then explains the next generation common rail system.
Technical Paper

Mixed Signal Power IC for Automotive Electronics

2007-04-16
2007-01-1595
Many ICs are used in various electronic components in automotive applications, such as ECUs (electronic control units) and smart actuators. Automotive ICs required the following features: (1) high integration of analog, digital and output devices; (2) high breakdown voltage for analog devices standing the battery voltage; (3) highly accurate control for analog circuits; (4) susceptibility under harsh operating conditions, such as high ambient temperature and high humidity; and (5) high surge immunity such as ESD (electrostatic discharge) robustness. To meet these requirements, we developed analog and output devices with improved surge endurance based on SOI wafer and trench-dielectric-isolation technologies. Analog circuit applications, especially accurate power management or high-precision solenoid driving, demands stable temperature-compensated output. Load dump and battery-jumping also needs high voltage protection and high noise immunity for these devices.
Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
Technical Paper

Compact High-resolution Millimeter-wave Radar for Front-obstacle Detection

2006-04-03
2006-01-1463
We propose a novel millimeter wave radar system and object detection algorithm for automobile use by using advanced null scanning method. Generally, null scanning method can achieve a higher resolution and a more compact sensor size compared to beam scanning method, but needs huge computing power. We introduced the theory of forgetting factor into it and developed a new null scan algorithm. It achieved a high lateral object separation ability of less than 3 degree, and a quick response under feasible computing power in simulation and test vehicle. These technologies enable compact and high performance radar for advanced safety system.
Technical Paper

Super Slim Automotive Acceleration Sensor Fabrication Process Developed by Applying Surface MEMS Technology

2006-04-03
2006-01-1464
We have developed a novel capacitive acceleration sensor fabrication process by applying surface MEMS (Micro Electro-Mechanical System) technology and successfully introduced this process for volume production of a new super slim sensor. The new process uses the ICP-RIE(Inductively Coupled Plasma - Reactive Ion Etching) technology to etch single crystal SOI(Si on Insulator wafers. In this technology, vertical Si etching is followed by, lateral etching along the buried oxide to release the movable electrode. Because of a dry process, the new process does not cause the movable structures to stick to each other. Our process uses only three masks and reduces the sensor chip size to a half that of our conventional capacitive acceleration sensors.
X