Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Sensorless Control of a Brushless Motor for the ESC Unit

2023-04-11
2023-01-0452
In general, automatic braking uses an electric stability control (ESC) hydraulic unit that can automatically increase the hydraulic pressure in the wheel cylinder (hereinafter called wheel pressure), independent of the driver’s braking operation. The hydraulic unit should have sufficient pressure response to apply autonomous emergency braking (AEB). It was necessary for the hydraulic unit to have a high flow rate for the pressure response. To satisfy the performance requirements of the AEB, a brushless motor, which has a high maximum rotational speed and good response, is adopted for the hydraulic unit. Furthermore, sensorless control, which does not require a rotation angle sensor, has been developed so that the motor size can be small and common to conventional units. The developed sensorless control can switch the driving methods in three states: pre-rotation, low speed, and high speed.
Technical Paper

Exhaust Gas Sensor with High Water Splash Resistant Layer for Lower Emission

2020-04-14
2020-01-0565
Increasingly stringent regulations call for the reduction of emissions at engine startup to purify exhaust gas and reduce the amount of CO2 emitted. Air-fuel ratio (A/F) sensors detect the composition of exhaust gas and provide feedback to control the fuel injection quantity in order to ensure the optimal functioning of the catalytic converter. Reducing the time needed to obtain feedback control and enabling the restriction-free installation of A/F sensors can help meet regulations. Conventional sensors do not activate feedback control immediately after engine startup as the combination of high temperatures and splashes of condensed water in the exhaust pipe can cause thermal shock to the sensor element. Moreover, sensors need to be installed near the engine to increase the catalyst reaction efficiency. This increases the possibility of water splash from the condensed water in the catalyst.
Technical Paper

Suppression of Soot Formation in Quasi-steady Diesel Spray Flame Produced by High-pressure Fuel Injection with Multi-orifice Nozzle

2019-12-19
2019-01-2270
The set-off length (also referred to as the “lift-off length”) is reduced by the re-entrainment of the burned gas by the backward flow surrounding a diesel spray jet produced by a multi-hole nozzle. In the present study, to estimate the equivalence ratio at the set-off length, a means of estimating the amount of burned gas that is re-entrained into the near-nozzle region of the diesel spray jet was established. The results revealed that the suppression of soot formation in quasi-steady diesel spray flames produced by a multi-hole nozzle and a high injection pressure is not attained by reducing the equivalence ratio at the set-off length. Analysis of the amount of soot along the spray axis using a two-color method revealed that the maximum soot amount position appears in a quasi-steady spray flame, after the collapse of the head vortex in which a dense soot cloud is formed. The maximum soot amount position does not change even if the injection pressure varies.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Technical Paper

Response Surface Modeling of Diesel Spray Parameterized by Geometries Inside of Nozzle

2011-04-12
2011-01-0390
A response surface model of a diesel spray, parameterized by the internal geometries of a nozzle, is established in order to design the nozzle geometries optimally for spray mixing. The explanatory variables are the number of holes, the hole diameter, the inclined angle, the hole length, the hole inlet radius, K-factor and the sac diameter. The model is defined as a full second-order polynomial model including all the first-order interactions of the variables, and a total of 40 sets of numerical simulations based on D-optimal design are carried out to calculate the partial regression coefficients. Partial regression coefficients that deteriorate the estimate accuracy are eliminated by a validation process, so that the estimate accuracy is improved to be ±3% and ±15% for the spray penetration and the spread, respectively. Then, the model is applied to an optimization of the internal geometries for the spray penetration and the spray spread through a multi-objective genetic algorism.
Technical Paper

The Advanced Diesel Common Rail System for Achieving a Good Balance Between Ecology and Economy

2008-01-09
2008-28-0017
At present, various efforts are being made in the industrial world to preserve the earth's environment. Automobile industry has to comply with the emission control regulations including NOx and PM and the requirement of reducing CO2 emission from the viewpoint of global warming protection and energy saving. In these situations, diesel engines having a high potential to reduce CO2 emission are attracting much attention. In order to enhance the potential of diesel to reduce CO2 while solving its problems (“slow, dirty, noisy”), common rail systems are vital. DENSO developed an advanced common rail system (CRS) that integrates fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa injection pressure. This paper describes the injection performance and effects of the 180MPa common rail system and then explains the next generation common rail system.
Technical Paper

Double-pipe Internal Heat Exchanger for Efficiency Improvement in Front Automotive Air Conditioning System

2007-04-16
2007-01-1523
In automotive air conditioning, balancing comfort and fuel efficiency is very important. Vehicle cooling performance improvements during initial cool down has reached a limit in recent years, especially in very hot regions. We have addressed this issue by developing a unique double-pipe internal heat exchanger. In the main discourse, we first clarify the concept of the internal heat exchanger system (IHE) using the temperature difference between the high and low pressure pipes in the refrigeration cycle, and propose the application of an efficient internal heat exchanger. This unique double-pipe internal heat exchanger can easily be manufactured by inserting the inner pipe into the outer pipe and by fixing the pipes at both ends. The length of the IHE is 400mm. This double-pipe internal heat exchanger can increase cooling performance by 5-12% at the equivalent power consumption levels in the same space as a conventional front air conditioner system.
Technical Paper

Optimal Control of Plural Power Supply Systems with Vehicle Electric Power Flow Management System (VEF)

2006-04-03
2006-01-1223
A lot of electric components have been installed in a vehicle today for comfort, safety and environment. This tendency is said to be continued in the future. Therefore, additional power supplies such as exhaust gas electricity generation system and thermal electricity generation system have been developed in the world to supply additional electricity as well as an enlargement of an alternator. However, if these new electricity supply systems are installed in a present electric power system that is controlled based on a voltage feedback, each supply system cannot be controlled effectively, because it is difficult to control output power of each system independently. An electric power based control system, Vehicle Electric power Flow management system (VEF), has been developed to avoid this problem. Sum of required electric power is calculated based on electric loads power and battery charging power. This required power is allocated to each power supply system.
Technical Paper

The Development of the Lead Free Carbon Brush for Starters

2005-04-11
2005-01-0599
Carbon brushes for automotive starters are used under severe conditions of high electric current density, high contact pressure and high sliding velocity. Therefore lead has traditionally been added to brushes to improve performance and durability. Lead is an environmental hazardous substance. In the EU, the law prohibits adding lead to brushes for electric motors which is installed on new automobiles in and after January 2005. In order to develop the lead free carbon brush for starters, we analyzed the effect and selected substitutive substance of lead. Adding lead to the brush reduces the electric resistance increase of the brush in high-temperature and high-humidity atmosphere and in high-temperature atmosphere. Furthermore lead reduces the wear amount of brush. We developed the lead free brush surpassing the lead addition brush in performance and durability by addition of lead alternatives silver and zinc.
Technical Paper

Improvement in the Brazeability of Aluminum Clad Thinner Fin for Automotive Heat Exchanger

2005-04-11
2005-01-1390
Through the years, aluminum automotive heat exchangers have been developed in order to have a high performance and a light weight. Therefore, the thickness of the aluminum sheets for the application has been reduced. As the brazeability declines with the reduction in thickness, fins having a thickness under 80μm may be difficult to secure a good brazeability. Therefore, we studied the brazeability to determine the limit of thickness using clad fins from 40 to 80μm. The fillet volume formed at the joints of the fin and tube decreased with the decreasing fin thickness and the Si content in both the filler metals and the core alloys. The suitable range of Si content in the filler metals and the core alloys to obtain a good brazeability decreased with the decreasing fin thickness. When the fins were thinner than the critical values, it was impossible to have a good brazeability.
Technical Paper

The Latest Technology of Controlling Micro-Pore in Cordierite Diesel Particulate Filter for DPNR System

2004-06-08
2004-01-2028
A DPNR (Diesel Particulate-Nox Reduction) system is designed to simultaneously remove PM (Particulate Matter) and NOx from the exhaust of diesel engined vehicles. A DPF (Diesel Particulate Filter) is used in the DPNR system to reduce the PM. The DPF must have high PM filtering efficiency, while at the same time having low back pressure. However, filtering efficiency and back pressure have trade off relations. Therefore, it is necessary to optimize the pore distribution in the walls of the DPF to satisfy both characteristics. This paper will explain that optimized control of pore distribution enables both high PM filtering efficiency and low back pressure.
Technical Paper

Concept of Vehicle Electric Power Flow Management System (VEF)

2004-03-08
2004-01-0361
Increasing electric loads in a vehicle causes over-discharge of a battery and drag torque due to an alternator. This paper gives a system concept of vehicle electric power flow management to solve these issues. Its primary function includes preserving electricity in a battery, stabilizing electric bus voltage, interfacing with vehicle torque control system, and improving fuel economy. The key point to realize such a system is a unified structure. It offers ‘Plug and Play’ function for electric power management components. Newly developed Vehicle Electric Power Flow Management System (VEF ) totally controls electric power flow in a vehicle. VEF contains an Electric Power Manager and its functional sub-systems, and controls them with the key parameter ‘electric power’. The sub-system includes Generation, Storage, Conversion, and Distribution to the loads.
Technical Paper

Environment-Friendly Fluxless Soldering Process for High Sealing Ability on Pressure Sensors

2001-03-05
2001-01-0341
In a conventional soldering process, solvents, such as chlorofluorocarbons (CFCs), have been necessary to remove the flux-residue after soldering. A new CFC-free fluxless soldering process has been developed to obtain high sealing ability even in a small soldering area. This new process utilizes a reducing atmosphere with an appropriate load and assembly orientation to solder the parts. Under this fluxless condition, it is found that appropriate loading and good solder-wettability of the upper part increase the wettability of the lower part.
Technical Paper

Development of Quad-layer Clad Brazing Sheet for Drawn Cup Type Evaporator: Part 2

2001-03-05
2001-01-1254
We have achieved significant weight reduction for the MS (Multi-Tank Super Slim Structure) Evaporator (1)currently in production at DENSO CORPORATION. The evaporator of HVAC unit, located in the instrument panel, is a component of the aluminum heat exchanger used in automotive air conditioners. The new evaporator uses thinner quad-layer sheet material, thanks to optimization of the electrical potential among its outer filler metal, intermediate anodic layer and core. The evaporator is thus lighter than conventional evaporators, but retains equivalent corrosion resistance.
Technical Paper

Development of a Cooling Module Containing a Radiator and a Condenser Part 1: Product Design

2001-03-05
2001-01-1018
In conventional automobile designs, a radiator for cooling the engine and a condenser for condensing the air-conditioner refrigerant are typically configured independently of each other; they are usually mounted in series in the front of the engine compartment so that they will receive sufficient air flow while the vehicle is running. We have developed a smaller and higher performance cooling module by integrating these two heat exchangers into one unit. (Fig 1) For the heat dissipation fin, we have employed an integral fin construction equipped with an insulating slit, resulting in effective prevention of thermal conduction from the higher temperature radiator side, to the condenser side. We also succeeded in improving heat dissipation performance by making effective use of the connection part of the integral fin.
Technical Paper

Development of Quad-layer Clad Brazing Sheet for Drawn Cup Type Evaporators: Part 1

2001-03-05
2001-01-1253
Having a light weight, a good heat conductivity and a good brazability, aluminum alloy is widely used for automotive heat exchanger systems. The major problem with Aluminum is perforation of the tube by pitting corrosion and corrosion protection is necessary in the field. In radiator and condenser systems using the the Nocolok brazing process given good corrosion resistance using cathodic protection with sacrificial anode made of Zn-sprayed onto tube or low corrosion potential fins etc. On the other hand, in drawn-cup type evaporators, that are fabricated from brazing sheet tubes in vacuum brazing method and then covered low electro-conductive drain water film in operation, the effect of cathodic protection by the anode fin is limited to a very small area. Therefore, this has been studied to improve self-corrosion resistance of the core in the brazing sheet tube.
Technical Paper

Automotive High Pressure Sensor

1998-02-23
980271
There has recently been an increasing need in various automotive monitoring and control systems for a simply structured and highly reliable high-pressure sensor to detect the higher pressures of oils, hydraulic fluids, air and air conditioning refrigerants. A simple, newly devised approach to sealing oil filled high-pressure sensors is introduced in this paper. The new structure utilizes a resin instead of the metal and glass conventionally used for hermetic sealing oil filled high-pressure sensors. This is made possible by the combined use of oils with large effective molecular diameters and carefully optimized design of shape and size of the sealing faces between sensor parts. The use of a sealed metal diaphragm allows for extensive use of the sensor with many different kinds of pressure media and in various applications.
X