Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Development of High Strength Aluminum-Zinc-Silicon Alloy Bearing with Polymer Overlay

2019-04-02
2019-01-0179
Recent automotive engine developments have made great progress in protecting the global environment and in meeting exhaust gas regulations and fuel economy regulations. As a result, engine bearings tend to be used under severe conditions such as higher specific load onto the bearings and with low viscosity of lubricating oil. Aluminum alloy bearings are widely adopted as main bearings and connecting rod bearings in gasoline and diesel engines for passenger cars, and generally Al-Sn-Si alloy bearings without an additional overlay are used. Although these Al-Sn-Si alloy bearings have good anti-seizure properties and excellent running-in-properties, their material strength under high temperature conditions is not sufficient because of the low melting point of Sn phase contained in the alloy, and they could potentially result in damage to the bearing as seizure and fatigue under these conditions. In such cases, Cu-Pb-Sn alloy bearings with lead-based overlay are usually applied.
Technical Paper

Basic Characteristics of Lead-free Aluminum Alloy Bearings with Low Frictional Property of Adhered Molybdenum Disulfide

2007-04-16
2007-01-1570
A newly developed bearing is a lead-free aluminum alloy bearing with low frictional layer which consists of molybdenum disulfide in thicknesses of sub-micron levels on the bearing surface without required binders such as resin. The new bearing had a 50% lower static friction coefficient compared to the conventional aluminum alloy bearing, and exhibited comparable anti-seizure property and fatigue strength to the conventional bearing by evaluation of rig tests. These rig tests verified that the new bearing showed excellent frictional reduction properties. This paper describes details and performances of this newly developed bearing.
Technical Paper

Development of Multi-layer Aluminum-Tin-Silicon Alloy Bearing for Automotive Diesel Engine

2003-03-03
2003-01-0050
Recent engine bearings are operating under severe conditions to support such engine requirements as lower fuel consumption, longer life and protection of global environment. On Al-Sn-Si alloy bearings, it has some issue that fatigue may occur on the bearing alloy under severe condition such as in automotive diesel engines. Higher strength of alloy, which allows the fatigue resistance, can be obtained by solid solution treatment at higher temperature in general. But at the same time it makes intermetallic compounds with less bonding strength between intermediate layer and steel backing. A new bearing without lead has been developed by applying the heat treatment of bimetal and adequate intermediate layer for the process, consequently concluded to have the higher fatigue strength, with usual property on Al-Sn-Si alloy bearings.
Technical Paper

Development in Polymer Based Bearing Material for Automotive Shock Absorbers

2000-03-06
2000-01-0097
Recently, as for the rod guide bush bearing materials for shock absorbers, lower friction and the improvement of durability are required along with ride quality and longer life of automobile. Usually, lead is contained in bearing materials. However, the addition of the lead in bearing material is being restricted from the earth environmental problem. Bearing materials for shock absorbers are composite material consists of steel backing and covered with polymer surface layer. This basic material structure hasn't been changed till now, though it has been improved by changing its components and compositions based on the customer's requirement. Bearing material with both lower friction and excellent wear resistance has been developed in this study.
Technical Paper

Development of Three Layers Copper-Lead Bearings for Higher Speed Automotive Engines

1991-02-01
910161
As the recent automotive engines are designed for higher performance, the rotating speed of the engines have been increased drastically. Therefore the engine bearings should be further improved to have better anti-seizure and wear properties under the high temperature at the high rotating speed. The authors have analyzed the necessary functions of the three layers copper-lead bearings at such operating conditions, and then improved and developed the overlay and the copper based bearing alloy with steel back. Physical and chemical properties for this new bearing were studied. Then the bearing performance tests were carried out including the high speed seizure tests and engine tests. From these test results, it was confirmed that this new bearing could be applied for the recent very high speed automotive engines.
Technical Paper

New Type Fatigue Phenomenon of Aluminum-Based Engine Bearings

1989-02-01
890556
Heavily-loaded engine bearings in recent years have frequently utilized aluminum-tin-silicon alloy which does not require overlay. It has been found that some special fatigue damage may occur in these aluminum alloys under certain heavy-load application. A microscopic examination of such fatigue revealed a structural change inside the aluminum alloy. In this paper such fatigue phenomenon was studied in detail and reproduction tests were carried out on the bearing test machines. As a result, we have developed a new high-strength aluminum alloy which can prevent such fatigue damage.
X