Refine Your Search

Topic

Author

Search Results

Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

A New Approach to Predicting Component Temperature Collectives for Vehicle Thermal Management

2017-03-28
2017-01-0134
There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
Journal Article

On Road Durability and Performance Test of Diesel Particulate Filter with BS III and BS IV Fuel for Indian Market

2016-04-05
2016-01-0959
The future emission regulation (BS V) in India is expected to create new challenges to meet the particulate matter (PM) limit for diesel cars. The upcoming emission norms will bring down the limit of PM by 80 % when compared to BS IV emission norms. The diesel particulate filter (DPF) is one of the promising technologies to achieve this emission target. The implementation of DPF system into Indian market poses challenges against fuel quality, driving cycles and warranty. Hence, it is necessary to do a detailed on-road evaluation of the DPF system with commercially available fuel under country specific drive cycles. Therefore, we conducted full vehicle durability testing with DPF system which is available in the European market to evaluate its robustness and reliability with BS III fuel (≤350ppm sulfur) & BS IV (≤50ppm sulfur) fuel under real Indian driving conditions.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Journal Article

Modeling and Numerical Calculation of Snow Particles Entering the Air Intake of an Automobile

2015-04-14
2015-01-1342
A physically based model to predict the amount of snow which is entering the air intake of an automobile is extremely important for the automotive industry. It allows to improve the air intake system in the development state so that new vehicles can be developed in a shorter time. Using an Eulerian/Lagrangian approach within a commercial CFD-software we set up a model and calculated the snow ingress into an air intake of an automobile. In our numerical investigations we considered different particle shapes when calculating the drag coefficient, different coefficients of restitution and different particle sizes. Furthermore two-way coupling was considered. To obtain key parameters for the simulation, we measured the size of snow particles in the Daimler climatic wind tunnel in Sindelfingen by using a microscope and a measuring device from Malvern. Besides we used mechanical snow traps to determine the snow mass flux in the climatic wind tunnel and on a test area in Sweden.
Technical Paper

Challenges and Opportunities of Numerically Simulating the Idle Load Case for Vehicle Thermal Management

2015-04-14
2015-01-0340
Collective life-cycle data is needed when developing components like elastomer suspension mounts. Life-time prediction is only possible using thermal load frequency distributions. In addition to current extreme load cases, the Idle Load Case is examined at Mercedes-Benz Car Group as a collective load case for Vehicle Thermal Management (VTM) numerical simulations in early development stages. It combines validation opportunities for HVAC, cooling and transmission requirements in hot-country-type ambient conditions. Experiments in climatic wind tunnels and coupled 3D CFD and heat transfer simulations of the Idle Load Case have been performed. Measurements show steady conditions at the end of the load case. Decoupling of the torque converter, changes in ambient temperature and the technical implementation of a wind barrier for still air conditions exhibit influence on component-level results. Solar load, however, does not significantly change the examined component temperatures.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Journal Article

Air Spring Air Damper: Modelling and Dynamic Performance in Case of Small Excitations

2013-05-13
2013-01-1922
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
Technical Paper

Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive

2013-04-08
2013-01-0873
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
Technical Paper

Investigations of Spray-Induced Vortex Structures during Multiple Injections of a DISI Engine in Stratified Operation Using High-Speed-PIV

2013-04-08
2013-01-0563
Modern gasoline direct injection engines with spray-guided combustion processes require a stable and reliable fuel mixture formation as well as an optimal stratification at time of ignition. Due to the limited time for this process the temporal and spatial analysis of the in-cylinder flow field and its influence is of significant interest. The application of a piezo injector with outward opening nozzle and its capability to realize multiple injections within the compression stroke provides additional degrees of freedom for the stratified engine operation. To improve the performance of this combination a detailed knowledge of the in-cylinder flow field and its interaction with the spray propagation during and after multiple injections is essential. The flow field measurements were applied in an optical borescope single-cylinder research engine using a high-speed particle image velocimetry (HSPIV) setup.
Technical Paper

A Numerical Methodology to Compute Temperatures of a Rotating Cardan Shaft

2013-04-08
2013-01-0843
In this paper a new numerical methodology to compute component temperatures of a rotating cardan shaft is described. In general temperatures of the cardan shaft are mainly dominated by radiation from the exhaust gas system and air temperatures in the transmission tunnel and underbody. While driving the cardan shaft is rotating. This yields a uniform temperature distribution of the circumference of the shaft. However most simulation approaches for heat protection are nowadays steady-state computations. In these simulations the rotation of the cardan shaft is not considered. In particular next to the exhaust gas system the distribution of the temperatures of the cardan shaft is not uniform but shows hot temperatures due to radiation at the side facing the exhaust gas system and lower temperatures at the other side. This paper describes a new computational approach that is averaging the radiative and convective heat fluxes circumferentially over bands of the cardan shaft.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
Technical Paper

Ash Transport in Diesel Particle Filters

2012-09-10
2012-01-1732
Lubricant oil derived ash deposits still represent a major issue in diesel particulate filter operation in vehicles. In literature various ash deposition patterns are described. The two boundary deposition patterns are (a) wall layer and (b) filling at the back end of the inlet channels. The patterns are often associated with different regeneration methods. Continuous regeneration is supposed to result in a homogeneous ash layer, whereas periodic (active) regeneration is reported to result in back end filling. The current contribution describes the basic mechanisms associated with ash transport phenomena in particle filters. On the basis of (a) frequency of ash exposure to flow (b) ash particle structure re-entrainment and finally (c) axial ash transport the different deposition pattern can be explained. Exposure to flow accomplished by periodical soot removal, either by passive or active regeneration is the first step.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Technical Paper

Simulation Process of the Heat Protection of a Full Vehicle

2012-04-16
2012-01-0635
In this paper the latest status of the Vehicle Thermal Management (VTM) simulation at the Mercedes-Benz Car Group is shown. First of all VTM is nowadays a routine simulation application and secondly it is embedded in a standard process which starts with the CAD data collection and ends with standard reporting of the simulation results and thirdly VTM is now an integrated simulation application in terms of VTM includes the classical underhood-underbody analysis, the analysis of electric/electronic components, the brake temperature analysis and last not least the thermal comfort of passengers. There is also a close link to the tests of vehicle hardware. Beside the operational simulation process there is a process installed which guarantees good quality of the results.
Technical Paper

Modeling of Injected Diesel Fuel Conversion and Heat Release in Oxidation Catalyst: 3D-CFD & 1D Channels Approach

2012-04-16
2012-01-1293
A system for controlled heat generation in exhaust pipeline is studied, consisting of fuel injector and oxidation catalyst (plus connecting pipes). A 3D-CFD software (StarCD) coupled with a tailored 1D model of catalytic monolith channel (XMR) are employed for simulations of realistic, fully 3D system geometry. Exhaust gas flow, fuel injection, and distribution at the catalyst inlet is solved by 3D-CFD, while the processes inside individual representative channels are simulated by the effective 1D model. The 3D-CFD software calls iteratively the 1D channel model with proper boundary conditions and solves 3D temperature profile over the monolith, utilizing local enthalpy fluxes (including gas-solid heat transfer and reaction enthalpy) calculated by the 1D channel model. Seven representative hydrocarbons are used for characterisation of Diesel fuel composition with respect to catalytic oxidation kinetics.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

2011-09-13
2011-01-2270
The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
X