Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Technical Paper

Evolutionary Safety Testing of Embedded Control Software by Automatically Generating Compact Test Data Sequences

2005-04-11
2005-01-0750
Whereas the verification of non-safety-related, embedded software typically focuses on demonstrating that the implementation fulfills its functional requirements, this is not sufficient for safety-relevant systems. In this case, the control software must also meet application-specific safety requirements. Safety requirements typically arise from the application of hazard and/or safety analysis techniques, e.g. FMEA, FTA or SHARD. During the downstream development process it must be shown that these requirements cannot be violated. This can be achieved utilizing different techniques. One way of providing evidence that violations of the safety properties identified cannot occur is to thoroughly test each of the safety requirements. This paper introduces Evolutionary Safety Testing (EST), a fully automated procedure for the safety testing of embedded control software.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Automotive Gateway Design Using Evolutionary Algorithms

2005-04-11
2005-01-1696
Because of the rapidly increasing amount of electronic components and busses in a vehicle, the use of gateways in Electronic Control Units (ECUs) becomes more important. The upcoming question is how to design an optimal gateway. This paper describes a method for designing an optimal automotive gateway in an FPGA by using Evolutionary Algorithms (EAs). The complete gateway functionality is diagrammed in a specification graph which consists of a function graph and an architecture graph. The function graph describes the complete functionality of the gateway. The architecture graph shows the variety of the different implementation options of the mapped function graph. Each gateway task in the function graph can be realized either in a parallel way (different kinds of hardware implementations) or in a sequential way (software on a microprocessor core).
Technical Paper

Effects Causing Untripped Rollover of Light Passenger Vehicles in Evasive Maneuvers

2004-03-08
2004-01-1057
Accident statistics show that rollover accidents contribute to a large proportion of fatal traffic accidents in the U.S.. In the past it has been documented that some light passenger cars showed tendencies to roll over in evasive lane change maneuvers. In 1997, a newly developed mini van rolled over in a severe double lane change test called “moose-test”. Recently (2001), a new SUV showed similar tendencies in the Consumers Union Short Course test. It is not immediately clear why these evasive test maneuvers are so strongly related to untripped rollover of light passenger vehicles. Therefore, the goal of current research is to understand the circumstances and effects causing modern passenger vehicles to roll over in evasive maneuvers on the road. This paper discusses research activities concerning the following questions: How do critical steering strategies lead to untripped rollover? Are resonant frequencies excited during maneuvers leading to rollover?
Technical Paper

Bionic Optimization of Air-Guiding Systems

2004-03-08
2004-01-1377
Topology optimization in structural analysis is known for many years. In the presented procedure, “topology optimization” is used for computational fluid dynamics (CFD) for the first time. It offers the possibility of a very fast optimization process under utilization of the physical information in the flow field instead of using optimization algorithms like for example evolution strategies or gradient based methods. This enables the design engineer to generate in a first layout air guiding systems with low pressure drop in a fast and easy manner, which can than be improved further due to constraints of styling or production requirements. This procedure has been tested with many examples and shows promising results with a reduction in pressure loss up to 60% compared to a duct designed in CAD in the traditional way.
Technical Paper

Active Body Control (ABC) The DaimlerChrysler Active Suspension and Damping System

2002-10-21
2002-21-0054
Suspension systems have a major effect on the handling characteristics of a vehicle, particularly ride comfort and handling safety, and thus substantially determine its character. Their increasing significance is reflected by the greater value that ever more demanding customers attribute to the properties ride comfort and handling safety. Now that the potential of conventional, passive systems is largely exhausted, adaptive and active systems open up new possibilities, e.g.: the suppression of rolling and pitching movements, handling and ride height independent of load, handling characteristics and ride height adaptable to situation and customer requirement. The DaimlerChrysler active suspension and damping system (Active Body Control – ABC) manages to resolve the conflict of aims between handling safety and ride comfort which afflicts conventional fixed suspension systems, and as a result offers greater freedom of layout whilst enabling optimization of both target criteria.
Technical Paper

Multidimensional Optimization of In-Cylinder Tumble Motion for the New Chrysler Hemi

2002-05-06
2002-01-1732
The current is an investigation of the effects of charge motion, namely tumble, on the burn characteristics of the new Chrysler Hemi SI engine. In order to reduce prototyping, several combustion system designs were evaluated; some of which were eliminated prior to design inception solely based on CFD simulations. The effects of piston top and number of spark plugs were studied throughout the conceptual stage with the AVL-FIRE CFD code. It has been concluded that large-scale, persistent and coherent tumbling flow structures are essential to charge motion augmentation at ignition only if such structures are decimated right before ignition. Piston top had a detrimental effect on tumbling charge motion as the piston approaches the TDC. When compared to single spark plug operation, dual spark plug reflected considerable improvement on burn characteristics and engine performance as a consequence. The CFD simulations demonstrated good correlation with early dynamometer data.
Technical Paper

Development and Evaluation of a Numerical Simulation Strategy Designed to Support the Early Stages of the Aerodynamic Development Process

2002-03-04
2002-01-0571
In order to fulfill the need for an efficient and reliable computational method for the aerodynamic optimization of passenger cars, a numerical simulation strategy has been developed at DaimlerChrysler in Stuttgart. The simulation strategy consists of surface preparation, three dimensional mesh generation, flow simulation using CFD, and post-processing. The method will be applied mainly in the early concept phase of the development process when 1:4 scale models with smooth underbodies are used. In this study SAE-bodies as well as modifications of real car shapes are presented. The paper also discusses which improvements are needed to establish a mainly CFD-based process in the early concept phase.
Technical Paper

The Vision of a Comprehensive Safety Concept

2001-06-04
2001-06-0252
A look at the various past achievements in the field of passenger car safety raises the question whether any dramatic steps towards its improvement can still be expected. Will progress be confined to the optimization of existing systems or does the future hold new substantial safety steps? This paper elaborates on the issue that the time available before a potential accident occurs can be used to improve the safety of occupants and other involved road users. Accident analysis confirms that this is feasible for about two-thirds of all accidents. The recognition of an imminent collision bears a noteworthy potential for accident prevention, reduction of accident severity and injury severity. The former boundary between active and passive safety thus fades continually. Based upon this it is possible to describe vehicle safety by a comprehensive approach encompassing seven escalation levels.
Technical Paper

DaimlerChrysler's New 1.6L, Multi-Valve 4-Cylinder Engine Series

2001-03-05
2001-01-0330
This paper introduces the new 1.6L engine family, designed and developed by the Chrysler group of DaimlerChrysler Corporation in cooperation with BMW. An overview of the engine's design features is provided, with a detailed review of the performance development process with emphasis on airflow, combustion, thermal management and friction. This information is presented, to provide an understanding of how the engine simultaneously achieves outstanding levels of torque, power, fuel consumption, emissions and idle stability. The use of analytical tools such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) in the optimization of the engine is shown.
Technical Paper

Evolution-Strategy Based, Fully Automatic, Numerical Optimization of Gas-Exchange Systems for IC Engines

2001-03-05
2001-01-0577
Today, a number of simulation codes are available for pre-designing gas exchange systems of IC engines with good accuracy (e.g. PROMO, WAVE, GT-Power). However, optimizing such systems still requires numerous time consuming and inefficient trial and error runs. Also, accounting for constraints as size, volume, peak combustion pressure etc. multiplies the necessary efforts additionally. Hence there is a strong need for efficient procedures for finding optimum designs automatically and reliably. To automatically find the global optimum design parameters under a given set of real constraints of a practical case, a multi-membered evolution-strategy based optimization code was developed. The code which efficiently finds the true optimum dimensions of gas exchange systems (duct lengths, duct diameters, volumes) of an IC engine. The code can be readily generalized, and adapted to arbitrary optimization problems.
Technical Paper

A Method to Reduce the Calculation Time for an Internal Combustion Engine Model

2001-03-05
2001-01-0574
Coming along with the present movement towards the ultimately variable engine, the need for clear and simple models for complex engine systems is rapidly increasing. In this context Common-Rail-Systems cause a special kind of problem due to of the high amount of parameters which cannot be taken into consideration with simple map-based models. For this reason models with a higher amount of complexity are necessary to realize a representative behavior of the simulation. The high computational time of the simulation, which is caused by the increased complexity, makes it nearly impossible to implement this type of model in software in closed loop applications or simulations for control purposes. In this paper a method for decreasing the complexity and accelerating the computing time of automotive engine models is being evaluated which uses an optimized method for each stage of the diesel engine process.
Technical Paper

Active Safety of Commercial Vehicles - The European Status

2000-12-01
2000-01-3154
The increase of active safety will demand more and more electronic intelligence, if a drastic optimization of conventional systems is not possible any more. Starting from today's mechatronic systems, the trend leads via tomorrow's smart electronic systems to the future electronic networking of all intelligent vehicle systems. The paper describes the present status of these systems in Europe and the possibilities of increasing the active safety by using electronic intelligence.
X