Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Techniques to Improve Springback Prediction Accuracy Using Dynamic Explicit FEA Codes

2002-03-04
2002-01-0159
Finite Element Analysis (FEA) has been successfully used in the simulation of sheet metal forming process. The accurate prediction of the springback is still a major challenge due to its sensitivity to the geometric modeling of the tools, strain hardening model, yield criterion, contact algorithm, loading pattern, element formulation, mesh size and number of through-thickness integration points, etc. The objective of this paper is to discuss the effect of numerical parameters on springback prediction using dynamic explicit FEA codes. The example used in the study is from the Auto/Steel Partnership High Strength Steel Rail Springback Project. The modeling techniques are discussed and the guidelines are provided for choosing numerical parameters, which influence the accuracy of the springback prediction and the computation cost.
Technical Paper

A Study on the Effects of Simulation Parameters on Springback Prediction

2000-03-06
2000-01-1109
The use of commercial finite element analysis (FEA) software to perform stamping feasibility studies of automotive components has grown extensively over the last decade. Although product and process engineers have now come to rely heavily on results from FEA simulation for manufacturability of components, the prediction of springback has still not been perfected. Springback prediction for simple geometries is found to be quite accurate while springback prediction in complex components fails to compare with experimental results. Since most forming simulation FEA software uses a dynamic explicit solution method, the choice of various input parameters greatly affects the prediction of post formed stresses in the final component. Accurate stress prediction is critical for determination of springback, therefore this study focuses on the effects of some of the simulation parameters such as, element size, tool/loading speed and loading profile.
X