Refine Your Search

Search Results

Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine

2019-04-02
2019-01-0793
In view of the rapid depletion, increasing prices and uneven distribution of conventional petroleum fuels; the interest in the use of alternative fuels has increased exponentially. Fuels such as biodiesel & alcohol have been evaluated both at experimental and commercial scale due to improved emission characteristics as compared to conventional fuels. Alcohols are oxygenated and result in improving the engine performance. As a blend with conventional gasoline, the alcohols enhance the premixed and diffusive combustion phase which improves the combustion efficiency. The present investigation evaluates studies on stability and homogeneity along with physicochemical properties like density, viscosity, calorific value, copper-strip corrosion and solubility at room temperature of Propan-2-ol and gasoline blends. Comprehensive engine trials on unmodified petrol engine fuelled with blends of Propan-2-ol and gasoline blends in the proportions of 5, 10, 15 and 20% by volume have been conducted.
Technical Paper

Optimization of Biodiesel Production from Deodar Oil Using Response Surface Methodology [RSM]

2018-10-23
2018-01-5041
Biodiesel (fatty acid methyl ester, or FAME) can be used as an alternative fuel for diesel engines which is produced by the chemical reaction of vegetable oil or animal fat with an alcohol such as ethanol or methanol in the presence of a catalyst. The growing interest in biodiesel is because of the similarity in its properties when compared with the diesel fuel as well as various benefits it provides such as lower soot emissions, less dependency on crude oil, etc. The optimization of experimental parameters, such as catalyst concentration, molar ratio of alcohol to oil, and reaction time, on the transesterification for the production of deodar methyl ester was performed in this article. Optimization of the transesterification process of deodar oil was achieved by a three-factorial central composite design (CCD) using response surface methodology (RSM) in 20 experimental runs. The RSM was performed to determine the optimum operating conditions and to optimize the biodiesel yield.
Technical Paper

Process Optimization of Biodiesel Production from Cedar Wood Oil (Cedrus deodara) Using Response Surface Methodology

2018-04-03
2018-01-0665
As petroleum prices are rising continuously biodiesel production has been receiving worldwide awareness. Thus for its production the requirement for non-edible and unidentified feedstocks has risen. This research presents the production and process optimization of biodiesel obtained from non-edible feedstock namely cedar wood(Cedrus deodara) oil, with response surface methodology using statistical software minitab 18.0. Cedar Wood (Cedrus deodara) is a tree accessible in different parts of the world like India and Nepal. In Indian context, these are available in abundance especially in the forests of Himalayan region as a non-edible feedstock. Methyl ester of Cedar Wood Oil is prepared by process known as Transesterification. The FFA content of cedar wood oil was 0.5% which is below the 2% suggested for the application of the one step alkaline transesterification method.
Technical Paper

Study of Performance and Emissions Parameters of Single Cylinder Diesel Engine Fuelled with Micro Emulsion of Jatropha Oil and Ethanol

2017-10-08
2017-01-2331
The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
Technical Paper

Effect of Exhaust Gas Recirculation on Performance of an SI Engine Fueled with Methanol-Gasoline and Ethanol-Gasoline Blend with Hydrogen Boosting

2017-03-28
2017-01-1282
Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

2016-04-05
2016-01-1015
Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
Technical Paper

Experimental Analysis of Retarding the Spark Timing in a Hydrogen Enriched Gasoline and Alcohol Blend Powered Spark Ignition Engine

2016-04-05
2016-01-1277
Gasoline has been the major fuel in transportation, its good calorific value and high volatility have made it suitable for use in different injection methods. The drastic increase in use of carbon based fuels has led to increase in harmful emissions, thus resulting in implementation of stricter emissions norms. These harmful emissions include carbon monoxide and NOx. To meet the new norms and reduce the harmful emissions, better techniques have to be implemented to achieve better combustion of gasoline and reduce the amount of carbon monoxide in the exhaust. One such way of doing this is by enriching gasoline with hydrogen. Due to its low activation energy and high calorific value, the high energy released from hydrogen can be used to achieve complete combustion of gasoline fuel. However, there are certain drawbacks to the use of hydrogen in spark ignition engine, knocking and overheating of engine parts being the major problems.
Technical Paper

Comparative Study of Emissions and Performance of Hythane Boosted SI Engine Powered by Gasoline-Methanol Blend and Gasoline-Ethanol Blend

2016-04-05
2016-01-1281
The continued reliance on fossil fuel energy resources is not sufficient to cater to the current energy demands. The excessive and continuous use of crude oil is now recognized as unviable due to its depleting supplies and elevating environmental degradation by increased emissions from automobile exhaust. There is an urgent need for a renewable and cleaner source of energy to meet the stringent emission norms. Hythane is a mixture of 20% hydrogen and 80% methane. It has benefits of low capital and operating costs and is a cleaner alternative than crude oil. It significantly reduces tailpipe emissions and is the cheapest way to meet new emission standards that is BS-IV. Hythane produces low carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons (HC) on combustion than crude oil and helps in reduction of greenhouse gases.
Technical Paper

Some Experimental Studies on Use of Biodiesel as an Extender in SI Engine

2016-04-05
2016-01-1269
The present study was carried to explore the potential suitability of biodiesel as an extender of Kerosene in an off road dual fuel (gasoline start, kerosene run) generator set and results were compared with kerosene base line data. The biodiesel was blended with kerosene in two different proportions; 2.5% and 5% by volume. Physico-chemical properties of blends were also found to be comparable with kerosene. Engine tests were performed on three test fuels namely K100 (Kerosene 100%), KB 2.5 (Kerosene 97.5% + Biodiesel 2.5%) and KB5 (Kerosene 95% + Biodiesel 5%). It was found that brake thermal efficiency [BTE] increases up to 3.9% while brake specific energy consumption [BSEC] decreases up to 2.2% with increasing 5% volume fraction of biodiesel in kerosene. The exhaust temperature for blends was lower than kerosene. The test engine emitted reduced Carbon monoxide [CO] emission was 7.4 % less than using neat kerosene as compared to kerosene-biodiesel blends.
Technical Paper

In-Cylinder Combustion and Emission Characteristics of an Agricultural Diesel Engine Fuelled with Blends of Diesel and Oxidatively Stabilized Calophyllum Methyl Ester

2016-02-01
2016-28-0140
In the present experimental investigation, performance, emission and combustion characteristics of a single cylinder diesel engine using diesel-biodiesel blends and antioxidant containing biodiesel test fuels was carried out. The potential suitability of aromatic amine based antioxidants to enhance the oxidation stability of biodiesel on one hand and reduction of tail pipe oxides of nitrogen (NOx) on the other were evaluated. Tertiary Butyl Hydroquinone (TBHQ) was considered as the antioxidant and Calophyllum Inophyllum vegetable oil was taken as the feedstock for biodiesel production. The test fuel samples were neat diesel (D100), 10% and 20% blend of Calophyllum biodiesel with diesel (CB10 and CB20) and 1500 ppm of TBHQ in CB10 and CB20 (CBT10 and CBT20). The results indicated that neat biodiesel blended test fuels (CB10 and CB20) exhibited lower brake thermal efficiency compared to the diesel baseline by a margin of 3% to 10% at full load.
Technical Paper

Performance and Emission Characteristics of n-Butanol and Iso-Butanol Diesel Blend Comparison

2015-09-29
2015-01-2819
The growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion (LTC) and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
Technical Paper

Development of a Dedicated Hydrogen Port Injection Kit for Small Engines

2015-09-29
2015-01-2881
The danger posed by climate change and the striving for securities of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man's energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
Technical Paper

Comparative Study of Emissions and Performance of Hydrogen Boosted SI Engine Powered by Gasoline Methanol Blend and Gasoline Ethanol Blend

2015-04-14
2015-01-1677
Increased dependency on fossil fuels has led to its depletion as well as affected the environment adversely. Moreover, increasing crude oil prices is pressurizing vehicle manufacturers to invent new technology so as to increase fuel economy and at the same time to keep emissions under control. Hydrogen has gained popularity not just in terms of being an abundant alternative but also due to being a very clean propellant. In the present investigation, hydrogen boosting has been performed on an SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation. The engine selected for experimental analysis is a single cylinder, air cooled spark ignition engine that has been modified for hydrogen injection in the intake manifold prior to the port with the injection timing being held constant throughout the experiment.
Technical Paper

Blending of Higher Alcohols with Vegetable Oil Based Fuels for Use in Compression Ignition Engine

2015-04-14
2015-01-0958
Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
Technical Paper

Effect of Blending of Ethanol in Kusum Oil on Performance and Emission Characteristics of a Single Cylinder Diesel Engine

2014-04-01
2014-01-1396
In the present study, ethanol was added in lower proportions to non-edible vegetable oil “Schleichera oleosa” or “Kusum”, to evaluate various performance and emission characteristics of a single cylinder; diesel engine. For engine's trial, four samples were prepared with 5%, 10%, 15% and 20% ethanol in kusum oil (v/v) and the blends were named as E5K95, E10K90, E15K85 and E20K80 respectively. Neat Kusum oil was named as K100. The results indicated that brake thermal efficiency (BTE) was found to increase with increase in volume fraction of ethanol in the kusum oil. E5K95, E10K90, E15K85 and E20K80 test fuels exhibited maximum BTE of 25.4%, 26.4%, 27.4% and 27.7% respectively as compared to 23.6% exhibited by the neat Kusum oil. Similarly, full load brake specific energy consumption (BSEC) decreased from 16.3MJ/kWh in case of neat Kusum oil to 15.1MJ/kWh for E20K80 with an almost linear reduction pattern with increased ethanol composition in the test fuel.
Technical Paper

Some Experimental Studies on Combustion, Emission and Performance Characteristics of an Agricultural Diesel Engine Fueled with Blends of Kusum Oil Methyl Ester and Diesel

2014-04-01
2014-01-1952
Biodiesel from non-edible vegetable oils is of paramount significance in India due to insufficient edible oil production. The present work deals with relatively underutilized non-edible oil “Schleichera oleosa” or “Kusum”. The Kusum biodiesel (KB) was produced using a two stage esterification cum transesterification process as the free fatty acid content of the oil was high. Important physico-chemical properties were evaluated and they were found to conform with corresponding ASTM/EN standards. Various test fuels were prepared for the engine trial by blending 10%, 20%, 30% and 40% of KB in diesel by volume and were named as KB10, KB20, KB30 and KB40 respectively. The results showed that full load brake thermal efficiency was dropped by 3.8% to 17% with increase in KB composition in the test fuel. Diesel (D100) showed the maximum full load brake specific energy consumption followed by KB10, KB20, KB30 and KB40.
Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

2013-11-27
2013-01-2888
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Potential Utilization of CNG in Stationary HCCI Engine

2013-10-14
2013-01-2508
Internal combustion engines are extensively used in every field of life in today's world. Diesel engines being more efficient are preferred in the industrial and transportation sector in comparison to spark ignition engines for their higher efficiency, versatility and ruggedness. The major emissions of diesel engines are oxides of nitrogen (NOx), particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO). Among these emissions, oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For reduction of oxides of nitrogen (NOx) and particulate matter simultaneously, the use of Homogeneous Charge Compression Ignition (HCCI) have provided a sustainable solution in the present scenario. Further, the use of CNG in HCCI engine along with pilot diesel injection; the emissions have been decreased drastically. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions.
X