Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

Residual Gas Fraction Measurement and Estimation of the CFR Octane Rating Engine Operating Under HCCI Conditions

2023-09-29
2023-32-0010
The autoignition chemistry of fuels depends on the pressure, temperature, and time history that the fuel-air mixture experiences during the compression stroke. While piezoelectric pressure transducers offer excellent means of pressure measurement, temperature measurements are not commonly available and must be estimated. Even if the pressure and temperature at the intake and exhaust ports are measured, the residual gas fraction (RGF) within the combustion chamber requires estimation and greatly impacts the temperature of the fresh charge at intake valve closing. This work replaced the standard D1 Detonation Pickup of a CFR engine with a rapid sampling valve to allow for in-cylinder gas sampling at defined crank-angle times during the compression stroke. The extracted cylinder contents were captured in an emissions sample bag and its composition was subsequently analyzed in an AVL i60 emissions bench.
Technical Paper

Minimizing Steady-State Testing Time in an Engine Dynamometer Laboratory

2023-04-11
2023-01-0209
In the automotive industry, performing steady-state tests on an internal combustion engine can be a time consuming and costly process, but it is necessary to ensure the engine meets performance and emissions criteria set by the manufacturer and regulatory agencies. Any measures that can reduce the amount of time required to complete these testing campaigns provides significant benefits to manufacturers. The purpose of this work is then to develop a systematic approach to minimize the time required to conduct a steady-state engine test campaign using a Savitsky-Golay filter to calculate measured signal gradients for continuous steady-state detection. Experiments were conducted on an Armfield CM11-MKII Gasoline Engine test bench equipped with a 1.2L 3-cylinder Volkswagen EA111 R3 engine. The test bench utilizes throttle position control and an eddy current dynamometer braking system with automatic PID control of engine speed.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Technical Paper

Large-Angle Full-Field Strain Measurement of Small-Sized Objects Based on the Multi-Camera DIC Test System

2022-03-29
2022-01-0274
Digital Image Correlation (DIC) technology is a powerful tool in the field of experimental mechanics to obtain the full-field deformation/strain information of an object. It has been rapidly applied in industry in recent years. However, for the large-angle full-field strain measurement of small-sized cylindrical objects, it’s still a challenge to the DIC accurate measurement due to its small size and curved surface. In this paper, a measurement method based on the multi-camera DIC system is proposed to study the compressive performance of small-sized cylindrical materials. Three cameras form two stereo DIC measurement systems (1 and 2 cameras, and 2 and 3 cameras), each of which measures a part of the object. By calibrating three cameras at the same time, two stereos DIC coordinate systems can be unified to one coordinate system. Then match the two sets of DIC measurement data together to achieve large-angle measurement of the cylindrical surface.
Technical Paper

Numerical Investigation of the Impact of Fuel Flow Rate on Combustion in a Heavy-Duty Diesel Engine with a Multi-Row Nozzle Injector

2022-03-29
2022-01-0395
Diesel engines are one of the most popular combustion systems used in different types of heavy-duty applications because of higher efficiencies compared to the spark ignition engines. Combustion phasing and the rate of heat release in diesel engines are controlled by the rate at which the fuel is injected into the combustion chamber near top dead center. In this work, computational fluid dynamics (CFD) was employed to simulate the combustion behavior of a heavy-duty diesel engine equipped with a 16-hole injector, in which the nozzles were arranged in two individual rows. The two rows of nozzles have differential flow rate due to the geometrical construction of the injector. Combustion and performance characteristics of the engine were compared with and without considering the differential flow rate of the nozzle rows at a range of injection timing values.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
Technical Paper

Numerical Investigation of the Impact of Fuel Injection Strategies on Combustion and Performance of a Gasoline Compression Ignition Engine

2021-04-06
2021-01-0404
Gasoline compression ignition is a promising strategy to achieve high thermal efficiency and low emissions with limited modifications to the conventional diesel engine hardware. It is a partially premixed concept which derives its superiority from higher volatility and longer ignition delay of gasoline-like fuels combined with higher compression ratio typical of diesel engines. The present study investigates the combustion process in a gasoline compression ignition engine using computational fluid dynamics. Simulations are carried out on a single cylinder of a multi cylinder heavy-duty compression ignition engine which operates at a compression ratio of 17:1 and an engine speed of 1038 rev/min. In this study, a late fuel injection strategy is used because it is less sensitive to combustion kinetics compared to early injection strategies, which in turn is a better choice to assess the performance of the spray model.
Technical Paper

Numerical Evaluation of Spark Assisted Cold Idle Operation in a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0410
Gasoline compression ignition (GCI) has been shown to offer benefits in the NOx-soot tradeoff over conventional diesel combustion while still achieving high fuel efficiency. However, due to gasoline’s low reactivity, it is challenging for GCI to attain robust ignition and stable combustion under cold operating conditions. Building on previous work to evaluate glow plug-assisted GCI combustion at cold idle, this work evaluates the use of a spark plug to assist combustion. The closed-cycle 3-D CFD model was validated against GCI test results at a compression ratio of 17.3 during extended cold idle operation under laboratory-controlled conditions. A market representative, ethanol-free, gasoline (RON92, E0) was used in both the experiment and the numerical analysis. Spark-assisted simulations were performed by incorporating an ignition model with the spark energy required for stable combustion at cold start.
Technical Paper

Analyzing the Impact of Electric Vehicles Charging Stations on Power Quality in Power Distribution Systems

2021-04-06
2021-01-0199
Integration of electric vehicles (EV) in power distribution systems reduces emissions that contribute to climate changes and improves public health by reducing ecological damage. Even though EVs significantly impact reducing carbon emissions and less dependency on hydrocarbon-based generators, they could negatively impact power systems, especially power quality. This paper analyzes electric vehicle charging stations’ impact on power quality concerning the voltage and current analysis of the harmonic distortion. As a case study, a sample system has been chosen, and a charging station is integrated into the system to investigate the harmonic impacts on the system. Finally, various mitigation techniques to eliminate the harmonics and minimize EVs’ adverse impacts on power quality in power distribution systems have been discussed.
Journal Article

Review and Comparison of Different Multi-Channel Spatial-Phase Shift Algorithms of Electronic Speckle Pattern Interferometry

2021-04-06
2021-01-0304
Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. By a spatial phase shift technique, ESPI allows for the rapid, accurate and continuous 3D deformation measurement. Multi-channel and carrier frequency are the two main methods of spatial phase shift. Compared with carrier frequency method, which is subject to the problem of spectrum aliasing, multi-channel method is more flexible in use. For extracting the phase value of speckles, four-step algorithm and five-step arbitrary phase algorithm are commonly used. Different algorithms have different spatial resolution, operational requirements, and phase image quality.
X