Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Solder Void Modeling and Its Influence on Thermal Characteristics of MOSFETs in Automotive Electronics Module

2017-03-28
2017-01-0011
Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
Technical Paper

The New Wireless Frontier: Home and Vehicle Connectivity

2004-10-18
2004-21-0068
Our customers expect in their vehicles the same constant connectivity that they experience in their homes through high speed internet portals. New services based on these advances will be transparent and ubiquitous - completely integrated into our lives, just as electricity comes to the wall socket or water from the faucet. The Wi-Fi Radio implements this vision using Wireless Fidelity (Wi-Fi) based on the suite of IEEE 802.11 standards. Drivers have constant wireless connectivity and personalized digital content made available to them through the Wi-Fi Radio. Ford and our partner Delphi developed the Wi-Fi Radio to overcome the inherent functional and packaging limitations of our vehicles, to quickly introduce new technology at affordable prices and to seamlessly integrate new services into the vehicle. We chose the radio as the integration site because the radio is accessible to every customer and affordable on every vehicle.
Technical Paper

Diagnostic Strategies for Advanced Automotive Systems

2002-10-21
2002-21-0024
In recent years, the desire for improved vehicle performance, reliability and safety have increased the electrical content and its complexity in vehicles. Advanced automotive systems integrate sensors, controllers, actuators and communication networks. To maintain safety and reliability, a comprehensive system of diagnostics and physical and analytic redundancy are used. In some cases, diagnostic strategies based on analytical redundancy can provide detection, as well as fault-tolerance, and may provide benefits in cost, packaging, flexibility and reusability. This paper discusses a range of diagnostic methods and their applicability to advanced automotive systems such as X-by-Wire. It will also show the reduction to practice of an advanced analytical technique for an automotive application.
Technical Paper

Multi-Sensor Modules with Data Bus Communication Capability

1999-03-01
1999-01-1277
Automotive multi-sensor modules, capable of vehicle-wide communications via a data bus will be discussed. Proper sensor grouping, packaging and device placement are key issues in the implementation of smart sensor modules. Sensors that are candidates for clustering include temperature, acceleration, angular rate, barometric pressure, chemical, and light sensors. The capability to accommodate a variety of data bus communication protocols is required to satisfy the majority of automotive systems. System integration must be considered when employing a smart sensor network through-out an automobile in a cost effective manner. This paper will cover the module issues associated with sensing, packaging, electronics, communication and system integration.
Technical Paper

Concept to Production: Continuous Surface Keypad Switch

1999-03-01
1999-01-0413
The objective of this paper is to impart the challenges presented and the solutions derived to transform an artist's rendering into a production driver's door switch to be used in the interior of a high profile sports car. The challenges took many forms throughout the process, from data translation and packaging, to the final decorative issues. The results are a finished product providing a new approach to automotive interior switch design. It incorporates a low profile, continuous plane keypad with “soft touch” feel, tactile feedback, and integrated back lighting.
X