Refine Your Search

Topic

Author

Search Results

Technical Paper

The Auto-Generation of Calibration Guides from MATLAB® Simulink®

2019-03-19
2019-01-1332
With the inception of model-based design and automatic code generation, many organizations are developing controls and diagnostics algorithms in model-based development tools to meet customer and regulatory requirements. Advances in model-based design have made it easier to generate C code from models and help software engineers streamline their workflow. Typically, after the software has been developed, the models are handed over to a calibration team responsible for calibrating the features to meet specified customer and regulatory requirements. However, once the models are handed over to the calibration team, the calibration engineers are unaware of how to calibrate the features because documentation is not available. Typically, model documentation trails behind the software process because it is created manually, most of this time is spent on formatting. As a result, lack of model documentation or up-to date documentation causes a lot of pain for OEM’s and Tier 1 suppliers.
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Technical Paper

An Analytical and Experimental Study of a High Pressure Single Piston Pump for Gasoline Direct Injection (GDi) Engine Applications

2009-04-20
2009-01-1504
In recent years, gasoline direct injection (GDi) engines have been popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet stringent EPA standards. These engines require high-pressure fuel injection in order to improve the atomization process and accelerate mixture preparation. The high-pressure fuel pump is an essential component in the GDi system. Therefore, understanding the flow characteristics of this device and its associated behavior is critical for improving the performance of this category of engines. In this paper, the fluid flow characteristics in a high-pressure single-piston pump for use in GDi engines are analyzed using 1-D LMS Imagine.Lab AMESim system and 3-D Ansys Fluent computational fluid dynamics (CFD) models. The flow rate of the fuel pump under various cam speeds has been examined along with characteristics of the pump's control valve.
Technical Paper

Spray Pattern Recognition for Multi-Hole Gasoline Direct Injectors Using CFD Modeling

2009-04-20
2009-01-1488
This paper describes a correlation study on fuel spray pattern recognition of multi-hole injectors for gasoline direct injection (GDi) engines. Spray pattern is characterized by patternation length, which represents the distance of maximum droplet concentration from the axis of the injector. Five fuel injectors with different numbers and sizes of nozzle holes were considered in this study. Experimental data and CFD modeling results were used separately to develop regression models for spray patternation. These regressions predicted the influence of a number of injector operating and design parameters, including injection system operating pressure, valve lift, injector hole length-to-diameter ratio (L/d) and the orientation of the injector hole. The regression correlations provided a good fit with both experimental and CFD spray simulation results. Thus CFD offers a good complement to experimental validation during development efforts to meet a desired injector spray pattern.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

A Strategy to Partition Crash Data to Define Active-Safety Sensors and Product Solutions

2008-10-20
2008-21-0032
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Cylinder Pressure-Based Control of Pre-Mixed Diesel Combustion

2007-04-16
2007-01-0773
Implementation of real-time combustion feedback for use in closed-loop combustion control is a technology that has potential to assist in the successful production implementation of advanced diesel combustion modes. Low-temperature, pre-mixed diesel combustion is presently of interest because it offers the ability to lower the engine-out emissions of oxides of nitrogen (NOx) and particulate matter (PM). The need for lowering these two emissions is driven by tighter regulations enacted worldwide, especially the NOx limits in the United States. Reducing engine-out emissions eases the need for additional exhaust aftertreatment devices and their associated cost and mass. In this paper we will describe an experimental cylinder pressure-based control system and present both steady-state and transient results from a diesel engine employing a pre-mixed type of combustion.
Technical Paper

Evaluation of the MADYMO Full FE Human Model in a Rear Impact Simulation of an IndyCar

2006-12-05
2006-01-3659
Computer simulation was used as a complement to crash and injury field data analysis and physical sled and barrier tests to investigate and predict the spinal injuries of a rear impact in an IndyCar. The model was expected to relate the spinal loads to the observed injuries, thereby predicting the probability and location of spinal fractures. The final goal is to help reduce the fracture risk by optimizing the seat and restraint system design and the driver's position using computer modeling and sled testing. MADYMO Full FE Human Body Model (HBM) was selected for use because of its full spinal structural details and its compatibility with the vehicle and restraint system models. However, the IndyCar application imposed unique challenges to the HBM. First, the driver position in a race car is very different from that in a typical passenger car.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

The Effectiveness of Oxygen in Preventing Embrittlement in Air Bag Inflators Containing Gaseous Hydrogen

2006-04-03
2006-01-1188
This study examines the effectiveness of gaseous oxygen at preventing embrittlement in steel associated with exposure to gaseous hydrogen under static loading conditions. Notched C-ring samples machined from 4340 steel and heat treated to HRC 51-53 were used to test the neutrality of an oxygen-hydrogen gas mixture similar to that which may be used as a generant in an air bag inflator. The 29 percent oxygen to hydrogen gas ratio of the gas mixture was found to be sufficient to protect the steel from hydrogen embrittlement under static loading conditions. This would indicate that any steel with a hardness of HRC 51 or lower would be safe to use in gas-based air bag inflators containing a oxygen to hydrogen gas ratio of 29 percent or higher.
Technical Paper

Development of a Robust Injector Design for Superior Deposit Resistance

2005-10-24
2005-01-3841
A comprehensive investigation into why gasoline fuel injectors fail in the field due to deposit formation has led to the development of a robust fuel injector design. Analysis of field failures provided critical clues as to why fuel injectors form deposits. The development of a repeatable test and a repeatable deposit forming fuel allowed the confirmation of these clues and the testing of design improvements. This combination of test cycle and fuel allowed for a reduced test time while providing sufficient sensitivity to differentiate between injector design improvements. Confirmation of design improvements was completed on a stationary vehicle using both commercially available gasoline and a formulated deposit forming fuel.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

Low Volatility Fuel Delivery Control during Cold Engine Starts

2005-04-11
2005-01-0639
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
Technical Paper

Survey of Software Failsafe Techniques for Safety-Critical Automotive Applications

2005-04-11
2005-01-0779
A requirement of many modern safety-critical automotive applications is to provide failsafe operation. Several analysis methods are available to help confirm that automotive safety-critical systems are designed properly and operate as intended to prevent potential hazards from occurring in the event of system failures. One element of safety-critical system design is to help verify that the software and microcontroller are operating correctly. The task of incorporating failsafe capability within an embedded microcontroller design may be achieved via hardware or software techniques. This paper surveys software failsafe techniques that are available for application within a microcontroller design suitable for use with safety-critical automotive systems. Safety analysis techniques are discussed in terms of how to identify adequate failsafe coverage.
Technical Paper

Pressure Drop of Segmented Diesel Particulate Filters

2005-04-11
2005-01-0971
Segmented, Silicon-Carbide Diesel Particulate Filters appear to be automotive industry's popular choice for reducing particulate emissions of Diesel Engines, particularly for light duty platforms. Since flow resistance represents an important performance feature of a filter, it is important that reasonable prediction tools for such filters are developed for use in their development, design, applications and regeneration control. A model for predicting pressure drop of segmented filters is presented here: an existing, well-accepted pressure drop model for monolithic (non-segmented) filters is customized to one for a segmented filter using a ‘weighted number of inlet channels’ based on equivalent filtration wall area of a monolithic filter. Flow resistance data collected experimentally on segmented filters are used to demonstrate the accuracy of the new model.
X