Refine Your Search

Topic

Author

Search Results

Technical Paper

Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications

2023-05-08
2023-01-1078
Data-driven modeling can help improve understanding of the governing equations for systems that are challenging to model. In the current work, the Sparse Identification of Nonlinear Dynamical systems (SINDy) is used to predict the dynamic behavior of dynamic problems for NVH applications. To show the merit of the approach, the paper demonstrates how the equations of motions for linear and nonlinear multi-degree of freedom systems can be obtained. First, the SINDy method is utilized to capture the dynamic behavior of linear systems. Second, the accuracy of the SINDy algorithm is investigated with nonlinear dynamic systems. SINDy can output differential equations that correspond to the data. This method can be used to find equations for dynamical systems that have not yet been discovered or to study current systems to compare with our current understanding of the dynamical system.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Technical Paper

Automated 3D Printer Bed Clearing Mechanism

2020-04-14
2020-01-1301
The objective of this work was to design an automated bed clearing mechanism for the Anet brand A8 3D printer, which uses Fused Deposition Modeling (FDM) process. This work has been carried out as a capstone course. Many OEMs are focusing on using functional 3D printed parts to replace metal parts that otherwise require complex assemblies or to reduce weight. The concept behind the work presented in this paper was to allow every user to be able to print multiple parts without human interaction. This saves time to load and unload one part at a time. The idea was to develop a universal bed clearing mechanism that can be used for most brands of 3D printers. Upon researching into the many different styles and designs of printers, it became clear that the designs are different and complex to create a universal product. It was decided to aim for the most common style of 3D printers for which easy modeling and testing should be possible.
Journal Article

Noise, Vibration, and Harshness Considerations for Autonomous Vehicle Perception Equipment

2020-04-14
2020-01-0482
Automakers looking to remake their traditional vehicle line-up into autonomous vehicles, Noise, Vibration, and Harshness (NVH) considerations for autonomous vehicles are soon to follow. While traditional NVH considerations still must be applied to carry-over systems, additional components are required for an autonomous vehicle to operate. These additional components needed for autonomy also require NVH analysis and optimization. Autonomous vehicles rely on a suite of sensors, including Light Detection and Ranging (LiDAR) and cameras placed at optimal points on the vehicle for maximum coverage and utilization. In this study, the NVH considerations of autonomous vehicles are examined, focusing on the additional perception equipment installed in autonomous vehicles.
Journal Article

Lane Line Detection by LiDAR Intensity Value Interpolation

2019-10-22
2019-01-2607
Lane marks are an important aspect for autonomous driving. Autonomous vehicles rely on lane mark information to determine a safe and legal path to drive. In this paper an approach to estimate lane lines on straight or slightly curved roads using a LiDAR unit for autonomous vehicles is presented. By comparing the difference in elevation of LiDAR channels, a drivable region is defined. The presented approach used in this paper differs from previous LiDAR lane line detection methods by reducing the drivable region from three to two dimensions exploring only the x-y trace. In addition, potential lane markings are extracted by filtering a range of intensity values as opposed to the traditional approach of comparing neighboring intensity values. Further, by calculating the standard deviation of the potential lane markings in the y-axis, the data can be further refined to specific points of interest.
Technical Paper

A Non-Contact Technique for Vibration Measurement of Automotive Structures

2019-06-05
2019-01-1503
The automotive and aerospace industries are increasingly using the light-weight material to improve the vehicle performance. However, using light-weight material can increase the airborne and structure-borne noise. A special attention needs to be paid in designing the structures and measuring their dynamics. Conventionally, the structure is excited using an impulse hammer or a mechanical shaker and the response is measured using uniaxial or multi-axial accelerometers to obtain the dynamics of the structure. However, using contact-based transducers can mass load the structure and provide data at a few discrete points. Hence, obtaining the true dynamics of the structure conventionally can be challenging. In the past few years, stereo-photogrammetry and three-dimensional digital image correlation have received special attention in collecting operating data for structural analysis. These non-contact optical techniques provide a wealth of distributed data over the entire structure.
Journal Article

Preliminary Study of Perceived Vibration Quality for Human Hands

2019-06-05
2019-01-1522
A large body of knowledge exists regarding the effects of vibration on human beings; however, the emphasis is generally on the damaging effects of vibration. Very little information has been published regarding the effect of vibration on perceived consumer product quality. The perceived loudness of a product is quantified using the Fletcher-Munson equal loudness curves, but the equivalent curves for perceived vibration amplitude as a function of amplitude and frequency are not readily available. This “vibration quality” information would be valuable in the design and evaluation of many consumer products, including automobiles. Vibration information is used in the automobile design process where targets for steering wheel, seat track, and pedal vibration are common. For this purpose, the vibration information is considered proprietary and is generally applicable to a narrow frequency range. In this investigation, work paralleling the original Fletcher-Munson study is presented.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

On the Safety of Autonomous Driving: A Dynamic Deep Object Detection Approach

2019-04-02
2019-01-1044
To improve the safety of automated driving, the paramount target of this intelligent system is to detect and segment the obstacle such as car and pedestrian, precisely. Object detection in self-driving vehicle has chiefly accomplished by making decision and detecting objects through each frame of video. However, there are diverse group of methods in both machine learning and machine vision to improve the performance of system. It is significant to factor in the function of the time in the detection phase. In other word, considering the inputs of system, which have been emitted from eclectic type of sensors such as camera, radar, and LIDAR, as time-varying signals, can be helpful to engross ‘time’ as a fundamental feature in modeling for forecasting the object, while car is moving on the way. In this paper, we focus on eliciting a model through the time to increase the accuracy of object detection in self-driving vehicles.
Technical Paper

The Auto-Generation of Calibration Guides from MATLAB® Simulink®

2019-03-19
2019-01-1332
With the inception of model-based design and automatic code generation, many organizations are developing controls and diagnostics algorithms in model-based development tools to meet customer and regulatory requirements. Advances in model-based design have made it easier to generate C code from models and help software engineers streamline their workflow. Typically, after the software has been developed, the models are handed over to a calibration team responsible for calibrating the features to meet specified customer and regulatory requirements. However, once the models are handed over to the calibration team, the calibration engineers are unaware of how to calibrate the features because documentation is not available. Typically, model documentation trails behind the software process because it is created manually, most of this time is spent on formatting. As a result, lack of model documentation or up-to date documentation causes a lot of pain for OEM’s and Tier 1 suppliers.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

A Numerical Study on the Effect of Enhanced Mixing on Combustion and Emissions in Diesel Engines

2016-04-05
2016-01-0606
A numerical and experimental study of the use of air motion control, piston bowl shape, and injector configuration on combustion and emissions in diesel engines has been conducted. The objective of this study is to investigate the use of flow control within the piston bowl during compression to enhance fuel air mixing to achieve a uniform air-fuel mixture to reduce soot and NO emissions. In addition to flow control different piston bowl geometries and injector spray angles have been considered and simulated using three-dimensional computational fluid dynamics and experiments. The results include cylinder pressure and emissions measurements and contour plots of fuel mass fraction, soot, and NO. The results show that soot and NO emissions can be reduced by proper flow control and piston bowl design.
Journal Article

Design and Optimization of a 98%-Efficiency On-Board Level-2 Battery Charger Using E-Mode GaN HEMTs for Electric Vehicles

2016-04-05
2016-01-1219
Most of the present EV on-board chargers utilize a three-stage design, e.g., AC/DC rectifier, DC to high-frequency AC inverter, and AC to DC rectifier, which limits the wall-to-battery efficiency to ∼94%. To further increase the efficiency and power density, a matrix converter is an excellent candidate directly converting grid AC to high-frequency AC thereby saves one stage. However, its control complexity and the high cost of building the back-to-back switches are barriers its acceptance. Instead, this paper adopts the 650V E-mode GaN HEMTs to build a level-2 on-board charger using the indirect matrix topology. The input voltage is 80∼260VAC, the battery voltage is 200∼500VDC and the rated power is 7.2kW. Variable switching frequency is combined with phase-shift control to realize the zero-voltage switching. To further increase the system efficiency, four GaN HEMTs are paralleled to form one switching module with a novel gate-drive technology.
Journal Article

Lean Implementation in Integrated Design and Manufacturing

2013-04-08
2013-01-1329
Lean applications in product development usually start with manufacturing due to the relative experience of measuring improvements and identifying wastes in physical settings. The full potential of lean implementation in any product development, however, can only be realized when applied throughout the process, starting with early process. Considering that the first and most essential principle in lean implementation is the characterization of value from the customer's perspective, it is imperative that the proper definition of value is realized at the beginning of the process. In addition, streaming and flowing of this customer's specified value should be realized throughout the process from start to finish. This paper discusses the application of lean principles to integrated design and manufacturing phases of the Product Development Process.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

Closed Loop Pressure Control System Requirements and Implementation

2011-04-12
2011-01-0391
Electro-hydraulic actuation has been used widely in automatic transmission designs. With greater demand for premium shift quality of automatic transmissions, higher pressure control accuracy of the transmission electro-hydraulic control system has become one of the main factors for meeting this growing demand. This demand has been the driving force for the development of closed loop pressure controls technology. This paper presents the further research done based upon a previously developed closed loop system. The focus for this research is on the system requirements, such as solenoid driver selection and system latency handling. Both spin-stand and test vehicle setups are discussed in detail. Test results for various configurations are given.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
X