Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Use of a Laboratory Scale Test to Study Internal Diesel Injector Deposits

2016-10-17
2016-01-2247
Internal Diesel Injector Deposits (IDID) in compression ignition engines have been widely studied in the past few years. Published results indicate that commonly observed IDID chemistries may be replicated using full-scale engine tests and subsequently fuel injection equipment (FIE) operated on non-fired electric motor driven test stands. Such processes are costly, complex and by nature can be difficult to repeat. The next logical simplification is to replicate IDID formation using laboratory-scale apparatus that recreate the appropriate chemical reaction process under well controlled steady state conditions. This approach is made more feasible by the fact that IDID, unlike nozzle hole coking, are not directly exposed to gasses involved in the combustion process. The present study uses an instrument designed to measure thermal oxidation stability of aviation turbine fuels to successfully replicate the deposit chemistries observed in full-scale FIE.
Journal Article

Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008-06-23
2008-01-1658
Partially Premixed Combustion (PPC) has shown its potential by combining high combustion controllability with emission characteristics that are close to those of an HCCI engine. In order to get PPC the ignition delay needs to be long enough for the fuel and air to mix prior to combustion. This can be achieved by injecting the fuel sufficiently early while running with high EGR. In order to find out where and how PPC occurs a map that shows the changes in combustion characteristics with injection timing and EGR was created. The combustion characteristics were studied in a six cylinder heavy duty engine where the Start of Injection (SOI) was swept from early to late injection over a wide range of EGR levels. The emissions were monitored during the sweeps and in the most promising regions, with low emissions and high efficiency, additional changes in injection pressure and engine speed were applied to get a more versatile picture of the combustion.
Technical Paper

Advanced hybrid electronic unit injector with accumulator for enhanced multiple injection and ultra high injection pressure capability

2007-07-23
2007-01-1895
In order to meet new worldwide emission regulations for heavy-duty diesel engines and to provide high specific power output without fuel consumption penalties there is a requirement for the fuel injection system to have a flexible choice of injection characteristics. Such a fuel injection system has to provide multiple injections, modulated injection pressures and rates for every injection, and possibly variable spray cone angle to accommodate early injection without wall wetting whilst maintaining conventional injection for rated power. The aim of this paper is to present the advanced hybrid electronic unit injector system (EUI). This system incorporates an accumulator rail, which enables high pressure multiple injection events at different injection pressures for a very wide range of injection timings that would not normally be achievable using a conventional EUI system and single lobe EUI camshaft.
Technical Paper

Improvements of the KIVA Dense Spray Modeling for HSDI Diesel Engines

2007-01-23
2007-01-0001
A numerical study has been performed to investigate the soot emission from a high-speed single-cylinder direct injection diesel engine. It was shown that the current KIVA CFD code with the standard evaporation model could predict the experimental trend, where at a low speed running condition a higher smoke reading is reached when increasing the injector protrusion into the piston chamber and conversely a lower smoke reading was recorded for the same change in injector protrusion at a high running speed condition. Evidence of inappropriate air/fuel mixing was seen via rates of heat release analyses, especially in the high-speed conditions. Efforts to reduce this discrepancy by way of improvements to the KIVA breakup and evaporation models were made. Results of the modified models showed improvements in the vapor dispersion of the atomizing liquid jet, thus affecting the mixing rates and predicted smoke emissions.
X