Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of closed-loop combustion phase optimization for varying fuel compensation and cylinder balancing in a HD SI-ICE

2024-04-09
2024-01-2837
Alternative fuels, such as natural and bio-gas, are attractive options for reducing greenhouse gas emissions from combustion engines. However, the naturally occurring variation in gas composition poses a challenge and may significantly impact engine performance. The gas composition affects fundamental fuel properties such as flame propagation speed and heat release rate. Deviations from the gas composition for which the engine was calibrated result in changes in the combustion phase, reducing engine efficiency and increasing fuel consumption and emissions. However, the efficiency loss can be limited by estimating the combustion phase and adapting the spark timing, which could be implemented favorably using a closed-loop control approach. In this paper, we evaluate the efficiency loss resulting from varying gas compositions and the benefits of using a closed-loop controller to adapt the spark timing to retain the nominal combustion phase.
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

Experimental Investigation of Pilot Injection Strategies to Aid Low Load Compression Ignition of Neat Methanol

2024-04-09
2024-01-2119
The growing demand to lower greenhouse gas emissions and transition from fossil fuels, has put methanol in the spotlight. Methanol can be produced from renewable sources and has the property of burning almost soot-free in compression ignition (CI) engines. Consequently, there has been a notable increase in research and development activities directed towards exploring methanol as a viable substitute for diesel fuel in CI engines. The challenge with methanol lies in the fact that it is difficult to ignite through compression alone, particularly in low-load and cold start conditions. This difficulty arises from methanol's high octane number, relatively low heating value, and high heat of vaporization, collectively demanding a considerable amount of heat for methanol to ignite through compression. Previous studies have addressed the use of a pilot injection in conjunction with a larger main injection to lower the required intake air temperature for methanol to combust at low loads.
Technical Paper

Model Based Algebraic Weight Selection for LQI Control Reducing Dog Clutch Engagement Noise

2024-04-09
2024-01-2146
This paper presents a feedback control strategy to minimize noise during dog clutch engagement in a hybrid transmission. The hybrid transmission contains an internal combustion engine(ICE) and 2 electric motors in P1 and P3 configurations. For efficiency during driving, at high vehicle speeds ICE is connected to wheels, via the dog clutch, hence shifting the vehicle from series to parallel hybrid mode. It is shown by experimental results that if the speed difference between the two sides of the dog clutch is below a certain level the engagement will be without clonk noise. In this paper the designed state feedback Linear Quadratic Integral (LQI) control provides the synchronization torque request to the P1 motor, hence matching the speed of one side of dog clutch with the other under the disturbance from combustion torque of the engine.
Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Comparative Assessment of Zero CO2 Powertrain for Light Commercial Vehicles

2023-08-28
2023-24-0150
The transport sector is experiencing a shift to zero-carbon powertrains driven by aggressive international policies aiming to fight climate change. Battery electric vehicles (BEVs) will play the main role in passenger car applications, while diversified solutions are under investigation for the heavy-duty sector. Within this framework, Light Commercial Vehicles (LCVs) impact is not negligible and accountable for about 2.5% of greenhouse gas (GHG) emissions in Europe. In this regard, few LCV comparative assessments on green powertrains are available in the scientific literature and justified by the fact that several factors and limitations should be considered and addressed to define optimal powertrain solutions for specific use cases. The proposed research study deals with a comparative numerical assessment of different zero-carbon powertrain solutions for LCV. BEVs are compared to hydrogen-based fuel cells (FC) and internal combustion engines (ICE) powered vehicles.
Technical Paper

Experimental Investigation of Glycerol Derivatives as Low-Concentration Additives for Diesel Fuel

2023-08-28
2023-24-0095
The worldwide adoption of renewable energy mandates, together with the widespread utilization of biofuels has created a sharp increase in the production of biodiesel (fatty acid alkyl esters). As a consequence, the production of glycerol, the main by-product of the transesterification of fatty acids, has increased accordingly, which has led to an oversupply of that compound on the markets. Therefore, in order to increase the sustainability of the biodiesel industry, alternative uses for glycerol need to be explored and the production of fuel additives is a good example of the so-called glycerol valorization. The goal of this study is therefore to evaluate the suitability of a number of glycerol-derived compounds as diesel fuel additives. Moreover, this work concerns the assessment of low-concentration blends of those glycerol derivatives with diesel fuel, which are more likely to conform to the existing fuel standards and be used in unmodified engines.
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Technical Paper

A Numerical Investigation of Gas Exchange Modeling and Performance Prediction of a Camless Two-Stroke Hydrogen Engine

2023-04-11
2023-01-0232
Heavy-duty vehicles are primarily powered by diesel fuel, emitting CO2 emissions regardless of the exhaust after-treatment system. Contrastingly, a hydrogen engine has the potential to decarbonize the transportation sector as hydrogen is a carbon free, renewable fuel. In this study, a multi-physics 1D simulation tool (GT-Power) is used to model the gas exchange process and performance prediction of a two-stroke hydrogen engine. The aim is to establish a maximum torque-level for a four-stroke hydrogen engine and then utilize different methods for two-stroke modeling to achieve similar torque by optimizing the gas exchange process. A camless engine is used as base, enabling the flexibility to utilize approximately square valve lift profiles. The preliminary step is the GT-Power model validation, which has been done using diesel and hydrogen engines (single-cylinder heavy-duty) experiments at different operating points (871 rpm, 1200 rpm, 1259 rpm, and 1508 rpm).
Technical Paper

Predictive Model of Driver’s Perception of Vehicle Stability under Aerodynamic Excitation

2023-04-11
2023-01-0903
In vehicle development, a subjective evaluation of the vehicle’s behavior at high speeds is usually conducted by experienced drivers with the objective of assessing driving stability. To avoid late design changes, it is desirable to predict and resolve perceived instabilities early in the development phase. In this study, a mathematical model is developed from measurements during on-road tests to predict the driver’s ability to identify vehicle instabilities under excitations such as aerodynamic excitations. A vehicle is fitted with add-ons to create aerodynamic excitations and is driven by multiple drivers on a high-speed track. Drivers’ evaluation, responses, cabin motion, and crosswind conditions are recorded. The influence of yaw and roll rates, lateral acceleration, and steering angle at various frequency ranges when predicting the drivers’ evaluation of induced excitation is demonstrated. The drivers’ evaluation of vehicle behavior is influenced by driver-vehicle interactions.
Journal Article

Fresh and Aged Organic Aerosol Emissions from Renewable Diesel-Like Fuels HVO and RME in a Heavy-Duty Compression Ignition Engine

2023-04-11
2023-01-0392
A modern diesel engine is a reliable and efficient mean of producing power. A way to reduce harmful exhaust and greenhouse gas (GHG) emissions and secure the sources of energy is to develop technology for an efficient diesel engine operation independent of fossil fuels. Renewable diesel fuels are compatible with diesel engines without any major modifications. Rapeseed oil methyl esters (RME) and other fatty acid methyl esters (FAME) are commonly used in low level blends with diesel. Lately, hydrotreated vegetable oil (HVO) produced from vegetable oil and waste fat has found its way into the automotive market, being approved for use in diesel engines by several leading vehicle manufacturers, either in its pure form or in a mixture with the fossil diesel to improve the overall environmental footprint. There is a lack of data on how renewable fuels change the semi-volatile organic fraction of exhaust emissions.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

2023-04-11
2023-01-0657
Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance. In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
X