Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

HVAC Noise Prediction Using Lighthill Wave Method

2023-05-08
2023-01-1125
Automotive Heating Ventilation and Air Conditioning (HVAC) system is essential in providing the thermal comfort to the cabin occupants. The HVAC noise which is typically not the main noise source in IC engine vehicles, is considered to be one of the dominant sources inside the electric vehicle cabin. As air is delivered through ducts and registers into the cabin, it will create an air-rush/broadband noise and in addition to that, any sharp edges or gaps in flow path can generate monotone/tonal noise. Noise emanating from the HVAC system can be reduced by optimizing the airflow path using virtual tools during the development stage. This paper mainly focuses on predicting the noise from the HVAC ducts and registers. In this study, noise simulations were carried-out with ducts and registers. A Finite Volume Method (FVM) based 3-dimensional (3D) Computational Fluid Dynamics (CFD) solver was used for flow as well as acoustic simulations.
Technical Paper

Vehicle Underbody Structural Performance Prediction During Waterfording Events Using A One Way Coupled CFD-CAE Approach

2023-04-11
2023-01-0609
Water fording events are one of the most challenging situations that vehicles undergo during their lifetime. During these events the underbody components (e.g. Front fascia, Bellypan, wheel liner etc.) are subject to very high loads. Typically, vehicle water fording tests are performed for various depths of water at prescribed vehicle speeds. Water fording tests are usually carried out during the proto phase of the vehicle development program to ensure acceptable performance. If issues are discovered, making changes to the fascia or body panels are typically very expensive. To avoid late changes, a fully virtual methodology was developed to facilitate vehicle water fording performance. The simulation is targeted to evaluate multiple aspects such as air induction system and estimation of hydrodynamic loads on body panel components.
Technical Paper

Sliding Mesh Fan Approach Using Open-Source Computational Fluid Dynamics to Investigate Full Vehicle Automotive Cooling Airflows

2023-04-11
2023-01-0761
Cooling airflow is an essential factor when it comes to vehicle performance and operating safety. In recent years, significant efforts have been made to maximize the flow efficiency through the heat exchangers in the under-hood compartment. Grille shutters, new fan shapes, better sealings are only some examples of innovations in this field of work. Underhood cooling airflow simulations are an integral part of the vehicle development process. Especially in the early development phase, where no test data is available to verify the cooling performance of the vehicle, computational fluid dynamics simulations (CFD) can be a valuable tool to identify the lack of fan performance and to develop the appropriate strategy to achieve airflow goals through the heat exchangers. For vehicles with heat exchangers in the underhood section the airflow through those components is of particular interest.
Technical Paper

Challenges in PM Measurement at 1 mg/mile and Tunnel Background Correction

2023-04-11
2023-01-0370
The LEV IV FTP PM limit in the recently approved CARB ACC II regulations for passenger cars and light duty trucks will be 1 mg/mile starting in 2025. Gravimetric PM measurement at these levels is very challenging as the net mass of PM on the filter in full flow tunnel testing ranges between 8 to 32 micrograms depending on amount of dilution. This is approaching tunnel background levels which, in combination with filter handling, static charge removal and microbalance instability, compounds the uncertainty. One major source of the uncertainty at these low levels is the tunnel contamination resulting in high variability from test to test and cell to cell. This tunnel background is mostly HC artifact which cannot be easily controlled and can be significantly higher than the 5-μg CFR allowable correction limit in some test cells.
Journal Article

Hood Flutter Under Transient Aerodynamic Loads

2022-03-29
2022-01-0762
Automobile hood design is driven by many factors, such as strict government regulations, fuel economy, weight, manufacturability, aerodynamic performance, aesthetics, structural integrity, and pedestrian safety standards. The requirement of improved fuel economy and safety regulations like pedestrian protection drive designers to reduce the thickness of the hood parts and use lighter materials. This leads to significant reduction in the hood stiffness. The hood needs to withstand steady and unsteady aerodynamic loads and meet deflection and vibration targets. The susceptibility of the hood to adverse aero load response is increased as the stiffness of the hood is reduced. The objective of this study is to develop a methodology to simulate hood behavior under transient aerodynamic loads in controlled environments. This study mainly focuses on developing fluid structure interaction methodology to simulate the behavior of the hood system under transient aerodynamic loads.
Journal Article

A Simulation Tool for Calculation of Engine Thermal Boundary Conditions

2022-03-29
2022-01-0597
Reducing emissions and the carbon footprint of our society have become imperatives requiring the automotive industry to adapt and develop technologies to strive for a cleaner sustainable transport system and for sustainable economic prosperity. Electrified hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and range extender powertrains provide potential solutions for reducing emissions, but they present challenges in terms of thermal management. A key requirement for meeting these challenges is accurately to predict the thermal loading and temperatures of an internal combustion engine (ICE) quickly under multiple full-load and part-load conditions. Computational Fluid Dynamics (CFD) and thermal survey database methods are used to derive thermal loading of the engine structure and are well understood but typically only used at full-load conditions.
Technical Paper

OBD Limit Part Creation Using DFSS Methodology: NMHC Catalyst Emissions Control System

2022-03-29
2022-01-0553
In the light duty diesel segment, the need persists for an advanced control system to monitor the health of an aftertreatment system throughout a vehicle’s life in order to maintain compliance with ever tightening emissions levels. In on-board diagnostics (OBD), every diagnostic is validated during development stages to detect when a system under monitoring of that diagnostic has failed. This necessitates the need to create parts which represent a failure that would be observed on the vehicle. These failed parts, referred to as limit or threshold parts, are developed through a limit part creation process. Although there are commonalities amongst Original Equipment Manufacturers (OEM), each OEM has their own detection logic which will require a unique and specific limit part. Various methods exist for creating these limit parts, and each method produces a different combination of ability to detect the failure and its associated tailpipe emissions.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Blockage Ratio and Reynolds Number Effects on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0956
For flows around a tire rotating over a ground plane, the Reynolds number is probably the most important parameter influencing the transition mechanism leading to flow separation from the tire surface, as it determines the viscous response of the boundary layer in the vortex-wall interaction. The present work investigates the effects of Reynolds number on an isolated tire model using a commercial Computational Fluid Dynamics (CFD) code. It validates the baseline simulation for this purpose against the Particle Image Velocimetry (PIV) data from Stanford University got using a Toyota Formula 1 race car tire model. Time-resolved velocity fields and vortex structures from the PIV data are used to correlate local and global flow phenomena to identify unsteady boundary-layer separation and the subsequent flow structures. The study will highlight the pre to post critical flow regimes where the aero coefficients and vortex structure will be studied.
Technical Paper

Effects of Domain Boundary Conditions on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0961
Tire modeling has been an area of major research in automotive industries as the tires cause approximately 25% of vehicle drag. With the fast-paced growth of computational resources, Computational Fluid Dynamics (CFD) has evolved as an effective tool for aerodynamic design and development in the automotive industry. One of the main challenges in the simulation of the aerodynamics of tires is the lack of a detailed and accurate experimental setup with which to correlate. In this study, the focus is on the prediction of the aerodynamics associated with an isolated rotating Formula 1 tire and brake assembly. Literature has indicated differing mechanisms explaining the dominant features such as the wake structures and unsteadiness. Limited work has been published on the aerodynamics of a realistic tire geometry with specific emphasis on advanced turbulence closures such as the Detached Eddy Simulation (DES).
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Optimum Engine Power Point Determination Method to Maximize Fuel Economy in Hybrid Vehicles

2021-04-06
2021-01-0419
One of the advantages of hybrid vehicles is the ability to operate the engine more optimally at a low brake specific fuel consumption (BSFC) as compared to conventional vehicles. This ability of hybrid vehicles is a major factor contributing to the fuel economy improvement over conventional vehicles. Unlike conventional gasoline powertrains, hybrid powertrains allow engine to be switched off and use battery power to propel vehicles. In order to maintain battery state of charge neutral operation between the start and end of a drive cycle, the net electrical energy consumption from the battery requires to be zero. An optimization algorithm can be developed and calibrated in different ways to achieve net zero battery energy over the cycle. For instance, the engine can be operated at powers higher than the power of the drive cycle to charge the battery. This accumulated energy can be used for all-electric propulsion by turning off the engine.
Technical Paper

A Case Study in DOC OBD Limit Parts’ Performance and Detection

2021-04-06
2021-01-0438
The reduction of automotive emissions is instrumental in the fight against air pollution and its impact on global warming. This realization has empowered governments around the world to mandate lower levels of vehicle emissions requiring the Original Equipment Manufacturers (OEMs) to implement advanced aftertreatment technologies in their applications. Achieving emission levels as low as SULEV30 or SULEV20 would have been impossible only a couple of decades ago, however, these lower levels of emissions are now a possibility through advanced control strategies and aftertreatment systems. As a part of this mandate to lower emissions, OEMs are also continuously monitoring the health and performance of their aftertreatment and control components. The implementation of On Board Diagnostics (OBD) ensures that control systems are functioning robustly and the emission levels are achieved and maintained to high mileages for the life of the vehicle.
Technical Paper

Experimental Investigation on the Effects of Design and Control Factors on the Performance and Emissions Characteristics of a Boosted GDI Engine Using Taguchi Method

2021-04-06
2021-01-0466
Mixture formation and combustion dynamics are the primary contributors to the performance and emission characteristics of direct-injected spark ignition (SI) engines. This requires assessing the benefits and tradeoffs of the design and control factors that influence mixing and the subsequent combustion event. In this study, Taguchi's L18 orthogonal array design of experiment (DoE) methodology has been applied to assess contributions and tradeoffs of varied compression ratio, piston bowl design, intake port tumble design, injector spray pattern, injection timing, injection pressure, exhaust gas recirculation (EGR) rate, and intake valve closing timing in a single-cylinder boosted gasoline direct injection (GDI) SI engine. This multiparameter study has been carried out across three speed-load conditions representative of typical automotive application operating ranges.
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
X