Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Identification of Tire Equivalent Stiffness for Prediction of Vertical Spindle Forces

2011-10-06
2011-28-0093
The research into vibration characteristics of a loaded and rolling tire is essential for the prediction of spindle forces. There are tire vibration characteristics one of which is the first natural frequency of a loaded and rolling tire is lower than that of an unrolling tire. The vibration characteristics, for a loaded and rolling tire, are affected by the effect of rotation, restrictions of the vibration due to road contact, and the behavior of rubber dependent on amplitude strain. The consideration of the degradation of natural frequency is therefore necessary in the tire model for prediction of spindle forces. This paper describes an identification method for the tire equivalent stiffness of a tire model focused on vertical spindle forces. The first mode is dominant in vertical spindle forces. First, the natural frequencies in rolling and unrolling tires are identified by operational impact test.
Technical Paper

Effects of Temperature and Crack Tip Opening Rate on Fracture Behavior of CNBR Modified Epoxy Adhesives Under Mode I Loading

1997-02-24
970661
The effects of temperature, crack tip opening rate and rubber content on static fracture characteristics of CNBR (Cross-linked acryloNitrile Butadiene Rubber) modified epoxy adhesives were investigated under mode I loading. Loading-unloading tests were statically performed by using DCB (Double Cantilever Beam) specimens. The fracture toughness increased with increasing the rubber content. The fracture toughness of CNBR modified and unmodified epoxy adhesives was much influenced by temperature and crack tip opening rate. The surface topology of fractured surface was changed by temperature and type of adhesive.
Technical Paper

Fatigue Fracture Characteristics of Toughened Epoxy Adhesive Under Mode I Loading - Effects of Glass Beads and CNBR Rubber Modification

1996-02-01
960576
The effects of inclusion of glass beads and rubber modification on the fatigue fracture characteristics of an epoxy adhesive were investigated. Hybrid effects were also investigated when not only the epoxy adhesive was rubber modified but also when glass beads were mixed simultaneously. Fatigue crack growth resistance was greatly increased due to glass beads, CTBN and CNBR modifications at the second stage of crack growth (da/dN=10-4-10-3 mm/cycle). However, the energy release rate at threshold for both CNBR and CTBN modified adhesives were lower than that for the unmodified adhesive. No significant hybrid effects were distinguishable.
Technical Paper

Effects of CNBR Modification on Mode I Fracture of Epoxy Adhesives for Automotive Application

1995-02-01
950130
The effects of CNBR (cross-linked acrylonitrile butadiene rubber) modification on the fracture characteristics of epoxy adhesives were investigated under Mode I static loading. Fracture tests were conducted by using DCB (double cantilever beam) specimens. Rubber content, adhesive thickness and loading rate were changed. The crack extension resistance (given by energy release rate) of the epoxy adhesives was much improved by CNBR modification. For the rubber modified epoxy adhesives, the crack extension resistance becomes high with an increase in adhesive thickness as well as loading rate. The reason why the CNBR modification improves the crack extension resistance was explained based on the surface observation and fractal dimension of the fractured surface.
X