Refine Your Search

Topic

Author

Search Results

Technical Paper

Atomization Model in Port Fuel Injection Spray for Numerical Simulation

2023-09-29
2023-32-0091
Computational Fluid Dynamics (CFD) simulation is widely used in the development and validation of automotive engine performance. In engine simulation, spray breakup submodels are important because spray atomization has a significant influence on mixture formation and the combustion process. However, no breakup models have been developed for the fuel spray with plate-type multi-hole nozzle installed in port fuel injection spark ignition (SI) engines. Therefore, the purpose of this study is to simulate spray formation in port fuel injection precisely. The authors proposed the heterogeneous sheet breakup model for gasoline spray injected from plate type multi-hole nozzle. The novel breakup model was developed by clarifying the phenomenological mechanism of the spray atomization process. In this paper, this model was improved in dispersion characteristics and evaluated by the comparison of the model calculation results with experimental data.
Technical Paper

Mixture Formation Process Analysis in Spray and Wall Impingement Spray under Evaporating Conditions for Direct injection S.I. engines

2023-09-29
2023-32-0015
In this study, the authors analyze the concentration distribution of an evaporative spray mixture with LIEF (Laser induced exciplex fluorescence) method, which is a type of optical measurement. LIEF method is one of the optical measurements for obtaining the spray concentration distribution for separating vapor/liquid phases based on the fluorescence characteristics. In this paper, a quantitative concentration distribution analysis method for wall impingement spray in heterogeneous temperature field has been proposed. Then, a series of experiments were performed in varying injection pressure and ambient density. As a result, a two-dimensional concentration distribution was obtained for the free spray and wall impingement spray.
Technical Paper

The Experimental Investigation of the Performance and Emissions Characteristics of Direct Injection Diesel Engine by Bio-Hydro Fined Diesel Oil and Diesel Oil in Different EGR

2020-01-24
2019-32-0595
Bio-hydro fined diesel (BHD) oil is known as a second generation oil made from bio hydro finning process. Biodiesel in the first generation is made from transesterification process and it has several disadvantages such as high density and increased the viscosity that can cause operational problems because can make some deposits in the engine. To overcome this, the second generation process of biodiesel has been modified from the first generation oil. BHD is made from the waste cooking oil by using the hydro finning process without the trans-esterification process. The results of BHD oil has nearly the same with diesel oil. BHD oil has low viscosity and high oxidation stability. Therefore, BHD oil can be used in the diesel engine without making any modifications in the engine. In this study, the comparison of performance and emissions characteristics from BHD oil, waste cooking oil, and diesel oil are investigated.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

2019-12-19
2019-01-2282
In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Investigation and Improvement of a Bouncing Torsional Vibration in Automotive Dual Mass Flywheel by Combining Testing and 1D CAE Modeling Approach

2019-06-05
2019-01-1556
Dual mass flywheel (DMF) is a well-known isolation system for vehicle drivetrain. DMF has two typical elastic energy storage systems: long travel arc springs and in-series spring units (including two or more springs) and sliding shoes connected in series. DMF has such complex nonlinear characteristics as torque-dependent torsional stiffness and rotational speed-dependent hysteresis friction due to its dependency of centrifugal force that is applied to components and radial force of springs. Because of this complexity, sub-harmonic vibration (SHV) may occur under certain circumstances, such as under light-load and high-rotational conditions. In general, since SHV’s frequency is 1/2 or 1/3 of the engine’s combustion frequency and may cause human discomfort, DMF must be designed robust against such nonlinear vibration. In this paper to reduce the SHV occurrence and to show a more robust design indicator, the SHV causing the mechanism is researched by testing and 1D CAE modeling.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Simultaneous Measurement of Fuel Droplet Deposition Amount and Oil Film Thickness on Spray Impingement Using Double Laser Induced Fluorescence Method

2017-10-08
2017-01-2371
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and collects the Particulate Matter (PM). However, as the operation time of engine increases, PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increasing in pressure loss. Therefore, Post injection has been attracted attention as DPF regeneration method for burning and removing PM in DPF. However, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concerned to deteriorate the sliding property of piston and the thermal efficiency. For this reason, it is necessary to elucidate the mechanism and the behavior that spray impinges lubricating oil film. Therefore, in this study, we aimed to construct model of Computational Fluid Dynamics (CFD) that predicts amount of oil dilution which is concern for post injection in diesel engine, with high accuracy.
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

2017-06-05
2017-01-1871
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
Technical Paper

Vibration Analysis of Rotating Tires Focused on Effect of Rotation Using a Three - Dimensional Flexible Ring Model

2017-06-05
2017-01-1903
The tire is one of the most important parts, which influence the noise, vibration, and harshness of the passenger cars. It is well known that effect of rotation influences tire vibration characteristics, and earlier studies presented formulas of tire vibration behavior. However, there are no studies of tire vibration including lateral vibration on effect of rotation. In this paper, we present new formulas of tire vibration on effect of rotation using a three-dimensional flexible ring model. The model consists of the cylindrical ring represents the tread and the springs represent the sidewall stiffness. The equation of motion of lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests.
Technical Paper

Experimental Investigation of Superheated Fuel Spray Characteristics for D.I.S.I Engines

2017-03-28
2017-01-0820
The flash boiling by fuel heating is a useful method to control the time spatial spray characteristics such as atomization of droplets, vaporization and air-fuel mixture concentration. It is one of the important phenomena for a direct injection gasoline engine (D.I.S.I) as a next generation powertrain. This report focuses on flash boiling spray using fuel heating. The purpose of this study is to understand its physical phenomena with scattered light method, schlieren photography, and Super High Spatial Resolution Photography (SHSRP). Fuel is iso-octane and injectors are a single hole nozzle and a multi hole nozzle. These are used for the basic phenomenon analysis. The influence on spray shape can be shown by schlieren photography. Spray droplet diameter and spray dispersion at the nozzle exit are observed by super high spatial resolution photography that is our original development technique. This is the first time that this SHSRP is applied to the measurement of the heating spray.
Technical Paper

Application of Transfer Path Analysis (TPA) to a Mechanical Structure with a Variety of Transfer Paths

2016-09-27
2016-01-8101
In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
Technical Paper

Visualization of Cavitation Inside Nozzle Hole and Injected Liquid Jet

2015-09-01
2015-01-1908
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
Technical Paper

Identification of Sound Source Model Using Inverse-Numerical Acoustic Analysis and Noise Prediction for Engine Enclosure

2015-06-15
2015-01-2250
This paper describes the identification of a sound source model for diesel engines installed on agricultural machines by using Inverse-Numerical Acoustic (INA) analysis, and noise predictions using the sound source model identified by INA. INA is a method of identifying surface vibrations from surrounding sound pressures. This method can be applied to sound sources with complicated shapes like those in engines. Although many studies on INA have been conducted, these past studies have focused on improvements to the identified accuracy and prediction of noise in free sound field or hemi-free sound field. The authors accurately predicted the sound pressure levels of engine enclosures using a sound source model identified by INA and a boundary element method (BEM). However, we had not yet verified the effectiveness of this sound source model against enclosures that had sound absorbing materials and openings.
Journal Article

Dynamic Analysis of an Excavator During Digging Operation

2013-09-24
2013-01-2410
Researches for automation of hydraulic excavators have been conducted for laborsaving, improved efficiency of operations and increased worker's safety improvement. Authors' final goal is to develop automatic digging system which can realize the high efficiency. Therefore, it is thought that appropriate digging control algorithm is important for the automation. For this goal, this paper shows a dynamics model of the backhoe excavator and simulations using such models. Detailed dynamic models are needed from the point of view of the control engineering. Authors evaluate effectiveness of automatic digging algorithm by simulation models. In this research, the linkage mechanism which contains the closed loops is modeled based on the Newton-Euler formulation, where motion equation is derived. Moreover, we apply a soil model for simulation, based on the two dimensional distinct element method (DEM), in order to reproduce reaction force from grounds.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

2011-09-11
2011-24-0001
Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
Technical Paper

Damping loss factor prediction in statistical energy analysis for co-generation system enclosure

2009-11-03
2009-32-0128
This paper describes damping loss factor prediction in statistical energy analysis (SEA) for co-generation system (CGS) enclosures. To accurately predict vibration and noise by SEA, it is important to estimate parameters called the damping and coupling loss factors. In this study, the damping loss factors were estimated by the decay ratio method and a technique for calculating the modal damping ratio that uses a multi-degree of freedom curve fit. The calculated loss factor was applied to the vibration prediction of the co-generation system, and the influence of the internal loss factor calculation method on prediction accuracy was verified.
Technical Paper

Evaluation of Feeling of Pulse for Cruiser-type Motorcycle

2009-11-03
2009-32-0131
This paper describes the relationship between the rider's evaluation of feeling of pulse and the seat vibration of the cruiser-type motorcycle. A simulated running condition was created to measure the seat vibration and engine speed. Next, the seat vibration was reproduced on the hydrodynamic shaker. Finally, we examined the influence of which order of rotational speed effects evaluation of feeling of pulse in a forced vibration test. As a result, it is known that 0.5th and 1st orders of seat vibration contribute to evaluation of feeling of pulse near 1,500 to 2,000 rpm of engine rotation.
Technical Paper

A Measures Planning Method by Analysis of Contribution of the Vibration Transfer Path

2009-05-19
2009-01-2197
This paper describes a proposal of techniques on Transfer Path Analysis (TPA) to analyze transmission of vibration among the components in a complex structure. This proposal is evolved from the previous one [1] in the dimension which dominates the quality of the analysis in automotive body structure by TPA. The proper coordinate transformation was introduced to resolve the troublesome process on the application of the body structure in the previous proposal. The complications are caused by the treatment with a lot of transfer functions and transmitted forces at the conjunctions that are complexly assembled with many adjacent nodes. Dimension of the analytical region is expanded from two to three in this study. That is, from the cross section of interface of components to the structure itself where the vibration transmits between two components.
X