Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Different Hydrogen-CNG Supply Method on the Combustion and Emission Characteristics in a SI Engine

2023-09-29
2023-32-0048
The purpose of this study is to reduce cooling loss in gas engines using hydrogen. In this report, the effect of different hydrogen-CNG supply methods on combustion and exhaust characteristics of SI engine were investigated. As a result, the 13A-port-injection caused sharp heat release at hydrogen addition ratio (RH) of 20 %, with a maximum brake thermal efficiency of 27.5 %. Also, the hydrogen-port-injection promotes combustion above RH=40 % and reduces cooling loss, resulting in a maximum brake thermal efficiency of 31.0 % at RH=80 %, 1.8 pt higher than that of the 13A-port-injection.
Technical Paper

Effect of Different Fuel Supply System on Combustion Characteristics in Hydrogen SI Engine

2022-01-09
2022-32-0092
In recent years, internal combustion engine using hydrogen gas, has attracted attention as one solution to the problem of global warming. Hydrogen gas has excellent combustion characteristics such as wide limits of inflammability and fast burning velocity because of high diffusion rate. Therefore, it has been made to obtain stable ignition and combustion by adding hydrogen with lean mixture in spark ignition engines using hydrocarbon fuels and to be attempted efficient operation by engine researchers. The purpose of this study is to reduce cooling loss in a gas engine using hydrogen gas and hydrogen Mixer system (Mixer) engine was remodeled to hydrogen Port Injection (PI) system engine. In this report, the heterogeneity of hydrogen mixture is clarified by comparing the combustion characteristics of the Mixer and the PI, and the effect of the difference in hydrogen supply systems on cooling loss is system. Ignition delay of the PI system is shorter than that of the Mixer.
Journal Article

Effect of Blended Fuel of Hydrotreated Vegetable Oil and Fatty Acid Methyl Ester on Spray and Combustion Characteristics

2022-01-09
2022-32-0073
Research on alternative fuels is necessary to reduce CO2 emissions. Hydrotreated Vegetable Oil (HVO) of light fuel physically improves spray and combustion characteristics. Fatty Acid Methyl Ester (FAME) is an oxygenated fuel and its combustion characteristics are chemically improved, although its spray characteristics such as penetration and atomization are deteriorated. The purpose of this study is to understand the effects of blending HVO, which has carbon neutral (CN) characteristics, with FAME, which also has CN characteristics, on spray and combustion characteristics, and to further improve emission such as THC and Smoke. This report presents the effect of the combination of improved spray characteristics and oxygenated fuel on emissions. Spray characteristics such as penetration, spray angle and spray volume were investigated by shadowgraph photography.
X