Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Current Approaches in HiL-Based ADAS Testing

2016-09-27
2016-01-8013
The way to autonomous driving is closely connected to the capability of verifying and validating Advanced Driver Assistance Systems (ADAS), as it is one of the main challenges to achieve secure, reliable and thereby socially accepted self-driving cars. Hardware-in-the-Loop (HiL) based testing methods offer the great advantage of validating components and systems in an early stage of the development cycle, and they are established in automotive industry. When validating ADAS using HiL test benches, engineers face different barriers and conceptual difficulties: How to pipe simulated signals into multiple sensors including radar, ultrasonic, video, or lidar? How to combine classical physical simulations, e.g. vehicle dynamics, with sophisticated three-dimensional, GPU-based environmental simulations? In this article, we present current approaches of how to master these challenges and provide guidance by showing the advantages and drawbacks of each approach.
Book

Automotive Software Engineering, Second Edition

2016-09-18
Since the early seventies, the development of the automobile has been characterized by a steady increase in the deploymnet of onboard electronics systems and software. This trend continues unabated and is driven by rising end-user demands and increasingly stringent environmental requirements. Today, almost every function onboard the modern vehicle is electronically controlled or monitored. The software-based implementation of vehicle functions provides for unparalleled freedoms of concept and design. However, automobile development calls for the accommodation of contrasting prerequisites – such as higher demands on safety and reliability vs. lower cost ceilings, longer product life cycles vs. shorter development times – along with growing proliferation of model variants. Automotive Software Engineering has established its position at the center of these seemingly conflicting opposites.
X