Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Signal Reconstruction of Two-Color Pyrometry Technique Using CFD and a Detailed Spectral Radiation Model in a Marine Diesel Engine Setup

2021-04-06
2021-01-0500
Optical soot pyrometry is a mature experimental technique that has been applied to a broad range of combustion systems for measuring soot temperature and concentration. Even though the method is widely used and well documented, the line of sight nature of the technique makes the interpretation of its results challenging. Notably, gradients in temperature and soot concentration along the line of sight or across the field of view can introduce significant levels of uncertainty in the results. This paper presents a numerical study where the signal from the experimental two-color pyrometry technique in a marine diesel engine reference experiment is reconstructed employing computational fluid dynamics (CFD) and a detailed Line-by-Line (LBL) spectral radiation model. The analysis is aimed at qualitatively supporting interpretability of experimental observations.
Technical Paper

Assessment of Two Premixed LES Combustion Models in an Engine-Like Geometry

2018-04-03
2018-01-0176
Large Eddy Simulation (LES) of premixed turbulent combustion in a confined cylinder setup at engine relevant conditions has been carried out for three different initial turbulence intensities, mimicking different flame propagation regimes. Direct Numerical Simulation (DNS) of the setup under investigation provides the reference data to be compared against. The DNS fields have been filtered on the LES grid and are used as initial conditions for the LES at onset of combustion, guaranteeing a direct comparability of the single realizations between the modeled and reference data. Two different combustion models, the G-Equation and CMC-premixed (Conditional Moment Closure) are compared with respect to their predictive capabilities as well as their usability and computational cost. While the G-Equation is a widely adopted approach for industrial applications and usually relies on a tunable turbulent flame speed closure, the novel LES-CMC comes as a tuning parameter free model.
Journal Article

Modeling Split Injections of ECN “Spray A” Using a Conditional Moment Closure Combustion Model with RANS and LES

2016-10-17
2016-01-2237
This study investigates n-dodecane split injections of “Spray A” from the Engine Combustion Network (ECN) using two different turbulence treatments (RANS and LES) in conjunction with a Conditional Moment Closure combustion model (CMC). The two modeling approaches are first assessed in terms of vapor spray penetration evolutions of non-reacting split injections showing a clearly superior performance of the LES compared to RANS: while the former successfully reproduces the experimental results for both first and second injection events, the slipstream effect in the wake of the first injection jet is not accurately captured by RANS leading to an over-predicted spray tip penetration of the second pulse. In a second step, two reactive operating conditions with the same ambient density were investigated, namely one at a diesel-like condition (900K, 60bar) and one at a lower temperature (750K, 50bar).
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Technical Paper

Soot Formation Modelling of Spray-A Using a Transported PDF Approach

2015-09-01
2015-01-1849
Numerical simulations of soot formation were performed for n-dodecane spray using the transported probability density function (TPDF) method. Liquid n-dodecane was injected with 1500 bar fuel pressure into a constant-volume vessel with an ambient temperature, oxygen volume fraction and density of 900 K, 15% and 22.8 kg/m3, respectively. The interaction by exchange with the mean (IEM) model was employed to close the micro-mixing term. The unsteady Reynolds-averaged Navier-Stokes (RANS) equations coupled with the realizable k-ε turbulence model were used to provide turbulence information to the TPDF solver. A 53-species reduced n-dodecane chemical mechanism was employed to evaluate the reaction rates. Soot formation was modelled with an acetylene-based two-equation model which accounts for simultaneous soot particle inception, surface growth, coagulation and oxidation by O2 and OH.
X