Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation and Experimental Study of Torque Vectoring on Vehicle Handling and Stability

2009-12-13
2009-28-0062
This paper discusses the effect of torque vectoring differential on improving vehicle handling and stability performance. The torque vectoring concept has been analyzed. The vehicle discussed in this paper is an AWD vehicle with torque vectoring differential in the rear and a torque biasing center differential. First, simulation results with vehicle model in CarSim® and torque vectoring control algorithm in Matlab®/Simulink® is discussed. Then, experimental results for vehicle tested at winter and summer test facility is presented. Both simulation and experimental results demonstrate the effectiveness of torque vectoring differential on vehicle handling & stability.
Technical Paper

Minimizing Dynamic Rollover Propensity with Electronic Limited Slip Differentials

2006-04-03
2006-01-1279
Vehicle rollover has the highest fatality rate among non-collision vehicle crashes. This paper introduces a control scheme with electronically controlled limited slip differential (ELSD) to prevent vehicle rollover. Although the analysis focuses on only an un-tripped and on-road scenario which is a small portion of vehicle rollover accidents, it intends to minimize the dynamic rollover propensity by meeting the National Highway Traffic Safety Administration's (NHTSA) fishhook test. A nonlinear model of planar vehicle dynamics with roll motion is analyzed, and the general characteristics of ELSD are presented. Based on that, a rollover mitigation algorithm is proposed. Finally, a computer simulation demonstrates the effectiveness of the rollover mitigation algorithm.
Technical Paper

Dynamic Modeling of Torque-Biasing Devices for Vehicle Yaw Control

2006-02-14
2006-01-1963
This paper focuses on modeling of torque-biasing devices of a four-wheel-drive system used for improving vehicle stability and handling performance. The proposed driveline system is based on nominal front-wheel-drive operation with on-demand transfer of torque to the rear. The torque biasing components of the system are an electronically controlled center coupler and a rear electronically controlled limited slip differential. Kinematic modeling of the torque biasing devices is introduced including stage transitions during the locking stage and the unlocking/slipping stage. Analytical proofs of how torque biasing could be used to influence vehicle yaw dynamics are also included in the paper. A yaw control methodology utilizing the biasing devices is proposed. Finally, co-simulation results with Matlab®/Simulink® and CarSim® show the effectiveness of the torque biasing system in achieving yaw stability control.
X