Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Elastomeric Swaging Finite Element Analysis Methodology to Evaluate Structural Integrity of Internal Swaged Joints

2024-06-01
2024-26-0428
In applications demanding high performance under extreme conditions of pressure and temperature, a range of Mechanically Attached Fittings (MAFs) is offered by various Multinational Corporations (MNCs). These engineered fittings have been innovatively designed to meet the rigorous requirements of the aerospace industry, offering a cost-effective and lightweight alternative to traditional methods such as brazing, welding, or other mechanically attached tube joints. One prominent method employed for attaching these fittings to tubing is through Internal Swaging, a mechanical technique. This process involves the outward formation of rigid tubing into grooves within the fitting. One of the methods with which this intricate operation is achieved is by using a drawbolt - expander assembly within an elastomeric swaging machine.
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Eco-Routing Algorithm for Energy Savings in Connected Vehicles Using Commercial Navigation Information

2024-04-09
2024-01-2605
Vehicle-to-everything (V2X) communication, primarily designed for communication between vehicles and other entities for safety applications, is now being studied for its potential to improve vehicle energy efficiency. In previous work, a 20% reduction in energy consumption was demonstrated on a 2017 Prius Prime using V2X-enabled algorithms. A subsequent phase of the work is targeting an ambitious 30% reduction in energy consumption compared to a baseline. In this paper, we present the Eco-routing algorithm, which is key to achieving these savings. The algorithm identifies the most energy-efficient route between an Origin-Destination (O-D) pair by leveraging information accessible through commercially available Application Programming Interfaces (APIs). This algorithm is evaluated both virtually and experimentally through simulations and dynamometer tests, respectively, and is shown to reduce vehicle energy consumption by 10-15% compared to the baseline over real-world routes.
Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Further Advances in Demonstration of a Heavy-Duty Low NOX System for 2027 and Beyond

2024-04-09
2024-01-2129
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine.
Technical Paper

Lubrication Effectiveness Determination for Wet-Sump Transmissions using Multiphase Computational Fluid Dynamics Modeling

2024-01-16
2024-26-0298
Wet-sump transmissions are widely used in heavy duty and medium duty vehicles. As these transmissions do not have a dedicated forced lubrication system, it is important that the gear train, shafts, and enclosure are designed appropriately so that enough oil splashes to critical locations to ensure sufficient lubrication. The lubrication effectiveness of such transmissions can be studied through detailed tests or numerical simulations. Often, the vehicle, and therefore the transmission, encounters some severe operating conditions, such as climbing on an incline, driving downhill, etc. Studying these conditions through tests is an expensive process and this imposes the need for an analysis first approach. In this paper, the 3D multiphase Volume of Fluid (VOF) method is used to examine two such extreme cases: an 8-degree tilted installation of transmission in a vehicle, and an inclined condition of transmission during a 10-degree uphill climb.
Technical Paper

Coupled 3-D Multiphase CFD Thermal Simulation and Experimental Investigation on Thermal Performance of Roots Blower

2024-01-16
2024-26-0297
Roots blower is a rotary positive displacement pump which operates by pumping a fluid with a pair of meshing lobes. Recent trends in automotive industry demands high power density solutions for various applications. In comparison with legacy applications, compressors for high power density applications demand continuous operation with harsher duty cycle as well as demand higher pressure ratios. Because of longer duty cycles, it will be subjected to high heat loads which will cause a rise in temperatures of timing gears, bearings, and other components within the assembly. Accurate prediction of thermal performance is critical to design a durable and efficient roots blower for high power density applications. Thermal analysis of an assembly of roots blower involves modelling of multi-physics phenomena. This paper details a coupled CFD analysis approach to predict temperatures of roots blower components and timing gear case oil. Timing gears are lubricated using wet sump lubrication.
Technical Paper

Simulation of Crimping Process for Electrical Contacts to Ensure Structural Integrity of Crimped Joint under Static Loads

2024-01-16
2024-26-0291
The use of electrical contacts in aerospace applications is crucial, particularly in connectors that transmit signal and power. Crimping is a widely preferred method for joining electrical contacts, as it provides a durable connection and can be easily formed. This process involves applying mechanical load to the contact, inducing permanent deformation in the barrel and wire to create a reliable joint with sufficient wire retention force. This study utilizes commercially available Abaqus software to simulate the crimping process using an explicit solver. The methodology developed for this study correlates FEA and testing for critical quality parameters such as structural integrity, mechanical strength, and joint filling percentage. A four-indenter crimping tool CAD model is utilized to form the permanent joint at the barrel-wire contact interfaces, with displacement boundary conditions applied to the jaws of the tool in accordance with MIL-C-22520/1C standard.
Technical Paper

Study of Critical Vias Design Parameters for Power Electronics Thermal Management

2024-01-16
2024-26-0317
With the advent of wide band gap semiconductor devices like SiC based MOSFETs/Diodes, there is a growing demand for utilizing electrical power instead of the conventional fuel-based power generation in both automotive and aerospace industry. In automotive/aerospace industry the focus on electrification has resulted in a need for sub-systems like inverters, power distribution units, motor controllers, DC-DC converters that actively utilize SiC based power electronics devices. To address the growing power density requirements for electronics in next generation product families, more efficient & reliable thermal management solution plays a critical role. The effective thermal management of the power electronics is also critical aspect to ensure overall system reliability. The conventional thermal management system (TMS) optimization targets heat sink/ cold plate design parameters like fin spacing, thickness, height etc. or sizing of the required cooling pump/fan.
Technical Paper

High-Load Engine Simulation of Renewable Diesel Fuel Using A Reduced Mechanism

2023-10-31
2023-01-1620
According to the Annual Energy Outlook 2022 (AEO2022) report, almost 30% of the transport sector will still use internal combustion engines (ICE) until 2050. The transportation sector has been actively seeking different methods to reduce the CO2 emissions footprint of fossil fuels. The use of lower carbon-intensity fuels such as Renewable Diesel (RD) can enable a pathway to decarbonize the transport industry. This suggests the need for experimental or advanced numerical studies of RD to gain an understanding of its combustion and emissions performance. This work presents a numerical modeling approach to study the combustion and emissions of RD. The numerical model utilized the development of a reduced chemical kinetic mechanism for RD’s fuel chemistry. The final reduced mechanism for RD consists of 139 species and 721 reactions, which significantly shortened the computational time from using the detailed mechanism.
Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Reducing the Probability of Error in Testing and Simulation

2023-05-08
2023-01-1114
Simulation and testing are often done by different engineers in different departments of a company. This can lead to disconnects and unrealistic predictions, especially if the person doing simulations does not have an experimental background. On the other hand, experimental results can also include errors that result in misleading answers. It is important for the engineer doing either testing or simulation to have a good understanding for what results are plausible and what results might be suspect. This paper will provide examples where error crept into testing or simulation that could have been caught and corrected early if a good feel for “reasonable” results had been in place. The importance of understanding how a software package is analyzing the data will be explained, since settings buried deep within a menu structure can drive misleading results.
Technical Paper

Experimental Demonstration of a High-Efficiency Split-Intake D-EGR Engine Concept

2023-04-11
2023-01-0237
Dedicated-EGR™ (D-EGR™) is a concept where the exhaust of one dedicated cylinder (D-Cyl) is routed into the intake thus producing EGR to be used by the whole engine. The D-Cyl operates rich of stochiometric which produces syngas that enhances the EGR stream permitting faster combustion and greater knock mitigation. Operating an engine using D-EGR improves the knock resistance which can permit a higher compression ratio (CR) thereby increasing efficiency. One challenge of traditional D-EGR is that the D-Cyl combustion becomes unstable operating with both rich and EGR dilute conditions. Therefore, the ‘Split Intake D-EGR’ concept seeks to resolve this problem by feeding fresh air to the D-Cyl, thus allowing even richer operation in the D-Cyl which further increases the H2 and CO yield thereby enhancing the efficiency benefits.
Technical Paper

A Predictive Model for Spark Stretch and Mixture Ignition in SI Engines

2023-04-11
2023-01-0202
A physics-based spark ignition model was developed and integrated into a commercial CFD code. The model predicted the spark discharge process based on the electrical parameters of the secondary ignition circuit, tracked the spark motion as it was stretched by in-cylinder gas motion, and determined the resulting energy deposition to the gas. In concert with the existing kinetic solver in the CFD code, the resulting ignition and flame propagation processes were simulated. The model results have been validated against both imaging rig experiments of the spark in moving air and against engine experimental data. The model was able to replicate the key features of the spark and to capture the cyclic variability of high-dilution combustion when multiple engine cycles were simulated.
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
Technical Paper

Comparison of Representative Wet and Dry Fire Suppressants to Retard Fire Propagation in Lithium-Ion Modules Initiated by Overcharge Abuse

2023-04-11
2023-01-0520
Overcharging lithium-ion batteries is a failure mode that is observed if the battery management system (BMS) or battery charger fails to stop the charging process as intended. Overcharging can easily lead to thermal runaway in a battery. In this paper, nickel manganese cobalt (NMC) battery modules from the Chevrolet Bolt, lithium manganese oxide (LMO) battery modules from the Chevrolet Volt, and lithium iron phosphate (LFP) battery modules from a hybrid transit bus were overcharged. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages, gaseous emissions, and feedback from volatile organic compound (VOC) sensors. Overcharging a battery can cause lithium plating and other exothermic reactions that will lead to thermal runaway.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
X