Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Numerical Investigation of Nozzle Geometry and Injection Condition Effects on Diesel Fuel Injector Flow Physics

2008-04-14
2008-01-0936
A three-dimensional homogeneous equilibrium model (HEM) has been developed and implemented into an engine computational fluid dynamics (CFD) code KIVA-3V. The model was applied to simulate cavitating flow within injector nozzle passages. The effects of nozzle passage geometry and injection conditions on the development of cavitation zones and the nozzle discharge coefficient were investigated. Specifically, the effects of nozzle length (L/D ratio), nozzle inlet radius (R/D ratio) and K or KS factor (nozzle passage convergence) were simulated, and the effects of injection and chamber pressures, and time-varying injection pressure were also investigated. These effects are well captured by the nozzle flow model, and the predicted trends are consistent with those from experimental observations and theoretical analyses.
Technical Paper

Soot Structure in a Conventional Non-Premixed Diesel Flame

2006-04-03
2006-01-0196
An analysis of the soot formation and oxidation process in a conventional direct-injection (DI) diesel flame was conducted using numerical simulations. An improved multi-step phenomenological soot model that includes particle inception, particle coagulation, surface growth and oxidation was used to describe the soot formation and oxidation process. The soot model has been implemented into the KIVA-3V code. Other model Improvements include a piston-ring crevice model, a KH/RT spray breakup model, a droplet wall impingement model, a wall-temperature heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process. Experimental data from a heavy-duty, Cummins N14, research DI diesel engine operated with conventional injection under low-load conditions were selected as a benchmark.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-04-11
2005-01-0121
Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process.
X