Refine Your Search

Topic

Author

Search Results

Journal Article

An Experimental Investigation into Diesel Engine Size-Scaling Parameters

2009-04-20
2009-01-1124
With recent increases in global fuel prices there has become a growing interest in expanding the use of diesel engines in the transportation industry. However, new engine development is costly and time intensive, requiring many hours of expensive engine tests. The ability to accurately predict an engine's performance based on existing models would reduce the expense involved in creating a new engine of different size. In the present study experimental results from two single-cylinder direct injection diesel engines were used to examine previously developed engine scaling models. The first scaling model was based on an equal spray penetration correlation. The second model considered both equal spray penetration and flame lift-off length. The engines used were a heavy-duty Caterpillar engine with a 2.44L displacement and a light-duty GM engine with a 0.48L displacement.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Technical Paper

Efficient Multidimensional Simulation of HCCI and DI Engine Combustion with Detailed Chemistry

2009-04-20
2009-01-0701
This paper presents three approaches that can be used for efficient multidimensional simulations of HCCI and DI engine combustion. The first approach uses a newly developed Adaptive Multi-grid Chemistry (AMC) model. The AMC model allows a fine mesh to be used to provide adequate resolution for the spray simulation, while dramatically reducing the number of cells that need to be computed by the chemistry solver. The model has been implemented into the KIVA3v2-CHEMKIN code and it was found that computer time was reduced by a factor of ten for HCCI cases and a factor of three to four for DI cases without losing prediction accuracy. The simulation results were compared with experimental data obtained from a Honda engine operated with n-heptane under HCCI conditions for which directly measured in-cylinder temperature and H2O mole fraction data are available.
Technical Paper

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0716
A multi-objective genetic algorithm methodology was applied to a heavy-duty diesel engine at three different operating conditions of interest. Separate optimizations were performed over various fuel injection nozzle parameters, piston bowl geometries and swirl ratios (SR). Different beginning of injection (BOI) timings were considered in all optimizations. The objective of the optimizations was to find the best possible fuel economy, NOx, and soot emissions tradeoffs. The input parameter ranges were determined using design of experiment methodology. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. For the optimization of piston bowl geometry, an automated grid generator was used for efficient mesh generation with variable geometry parameters. The KIVA3V release 2 code with improved ERC sub-models was used. The characteristic time combustion (CTC) model was employed to improve computational efficiency.
Technical Paper

Discussion of the Role of Fuel-Oil Diffusion in the Hydrocarbon Emissions from a Small Engine

2008-09-09
2008-32-0014
The contribution of fuel adsorption in engine oil and its subsequent desorption following combustion to the engine-out hydrocarbon (HC) emissions of a spark-ignited, air-cooled, V-twin utility engine was studied by comparing steady state and cycle-resolved HC emission measurements from operation with a standard full-blend gasoline, and with propane, which has a low solubility in oil. Experiments were performed at two speeds and three loads, and for different mean crankcase pressures. The crankcase pressure was found to impact the HC emissions, presumably through the ringpack mechanism, which was largely unaltered by the different fuels. The average and cycle-resolved HC emissions were found to be in good agreement, both qualitatively and quantitatively, for the two fuels. Further, the two fuels showed the same response to changes in the crankcase pressure. The solubility of propane in the oil is approximately an order of magnitude lower than for gasoline.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Technical Paper

Adaptive Injection Strategies (AIS) for Ultra-Low Emissions Diesel Engines

2008-04-14
2008-01-0058
Homogeneous Charge Compression Ignition (HCCI) combustion is being considered as a practical solution for diesel engines due to its high efficiency and low NOx and PM emissions. However, for diesel HCCI operation, there are still several problems that need to be solved. One is the spay-wall impingement issue associated with early injection, and a further problem is the extension of HCCI operation from low load to higher engine loads. In this study, a combination of Adaptive Injection Strategies (AIS) and a Two-Stage Combustion (TSC) strategy are proposed to solve the aforementioned problems. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. The TSC concept was applied to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load).
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations

2008-04-14
2008-01-0970
Lagrangian-Droplet and Eulerian-Fluid (LDEF) based spray models are widely used in engine and combustion system computations. Numerical grid and time-step-dependencies of Discrete Droplet Lagrangian spray models have been identified by previous researchers [1, 2]. The two main sources of grid-dependency are due to errors in predicting the droplet-gas relative velocity, and errors in describing droplet-droplet collision and coalescence processes. For reducing grid-dependency due to the relative velocity effects, results from gas jet theory are introduced along with a Lagrangian collision model [1, 3] and applied to model diesel sprays. The improved spray model is implemented in the engine simulation code KIVA-3V [4] and is tested under various conditions, including constant volume chambers and various engine geometries with vaporizing and combusting sprays with detailed chemistry.
Technical Paper

A Computational Analysis of Direct Fuel Injection During the Negative Valve Overlap Period in an Iso-Octane Fueled HCCI Engine

2007-04-16
2007-01-0227
This computational study compares predictions and experimental results for the use of direct injected iso-octane fuel during the negative valve overlap (NVO) period to achieve HCCI combustion. The total fuel injection was altered in two ways. First the pre-DI percent, (the ratio of direct injected fuel during the NVO period “pre-DI” to the secondary fuel supplied at the intake manifold “PI”), was varied at a fixed pre-DI injection timing, Secondly the timing of the pre-DI injection was varied while all of the fuel was supplied during the NVO period. A multi-zone, two-dimensional CFD simulation with chemistry was performed using KIVA-3V release 2 implemented with the CHEMKIN solver. The simulations were performed during the NVO period only.
Technical Paper

Experimental Investigation into the Effects of Direct Fuel Injection During the Negative Valve Overlap Period in an Gasoline Fueled HCCI Engine

2007-04-16
2007-01-0219
A single cylinder Yamaha research engine was operated with gasoline HCCI combustion using negative valve overlap (NVO). The injection strategy for this study involved using fuel injected directly into the cylinder during the NVO period (pre-DI) along with a secondary injection either in the intake port (PI) or directly into the cylinder (DI). The effects of timing of the pre-DI injection along with the percent of fuel injected during the pre-DI injection were studied in two sets of experiments using secondary PI and DI injections in separate experiments. Results have shown that by varying the pre-DI timing and pre-DI percent the main HCCI combustion timing can be influenced as a result of varied heat release during the negative valve overlap period along with hypothesized varied degrees of reformation of the pre-DI injected fuel. In addition to varying the main combustion timing the ISFC, emissions and combustion stability are all influenced by changes in pre-DI timing and percent.
Technical Paper

MIXPC Turbocharging System for Diesel Engines

2006-10-16
2006-01-3390
A newly developed turbocharging system, named MIXPC, is proposed and the performance of the proposed system applied to diesel engines is evaluated. The aim of this proposed system is to reduce the scavenging interference between cylinders, and to lower the pumping loss in cylinders and the brake specific fuel consumption. In addition, exhaust manifolds of simplified design can be constructed with small dimensions, low weight and a single turbine entry. A simulation code based on a second-order FVM+TVD (finite volume method + total variation diminishing) is developed and used to simulate engines with MIXPC. By simulating a 16V280ZJG diesel engine using the MPC turbocharging system and MIXPC, it is found that not only the average scavenging coefficient of MIXPC is larger than that of MPC, but also cylinders of MIXPC have more homogeneous scavenging coefficients than that of MPC, and the pumping loss and BSFC of MIXPC are lower than those of MPC.
Technical Paper

Effects of Piston Crevice Flows and Lubricant Oil Vaporization on Diesel Engine Deposits

2006-04-03
2006-01-1149
The effect of piston ring pack crevice flow and lubricant oil vaporization on heavy-duty diesel engine deposits is investigated numerically using a multidimensional CFD code, KIVA3V, coupled with Chemkin II, and computational grids that resolve part of the crevice region appropriately. Improvements have been made to the code to be able to deal with the complex geometry of the ring pack, and sub-models for the crevice flow dynamics, lubricating oil vaporization and combustion, soot formation and deposition were also added to the code. Eight parametric cases were simulated under reacting conditions using detailed chemical kinetics to determine the effects of variations of lube-oil film thickness, distribution of the oil film thickness, number of injection pulses, and the main injection timing on engine soot deposition. The results show that crevice-borne hydrocarbon species play an important role in deposit formation on crevice surfaces.
Technical Paper

Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion

2006-04-03
2006-01-0027
A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. A two-stage combustion (TSC) concept was explored to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load). Two combustion modes were combined in this concept. The first stage is ideally Homogeneous Charge Compression Ignition (HCCI) combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions. This can be achieved for example by optimization of two-stage combustion using multiple injection or sprays from two different injectors.
Technical Paper

A New Approach to Model DI-Diesel HCCI Combustion for Use in Cycle Simulation Studies

2005-10-24
2005-01-3743
An approach to accurately capture overall behavior in a system level model of DI Diesel HCCI engine operation is presented. The modeling methodology is an improvement over the previous effort [36], where a multi-zone model with detailed chemical kinetics was coupled with an engine cycle simulation code. This multi-zone technique was found to be inadequate in capturing the fuel spray dynamics and its impact on mixing. An improved methodology is presented in this paper that can be used to model fully and partially premixed charge compression ignition engines. A Computational Fluid Dynamics (CFD) driven model is used where the effects of fuel injection, spray evolution, evaporation, and turbulent mixing are considered. The modeling approach is based on the premise that once the initial spray dynamics are correctly captured, the overall engine predictions during the combustion process can be captured with good accuracy.
Technical Paper

The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

2005-04-11
2005-01-0148
A numerical study of the effects of injection parameters and operating conditions for diesel-fuel HCCI operation is presented with consideration of Variable Geometry Sprays (VGS). Methods of mixture preparation are explored that overcome one of the major problems in HCCI engine operation with diesel fuel and conventional direct injection systems, i.e., fuel loss due to wall impingement and the resulting unburned fuel. Low pressure injection of hollow cone sprays into the cylinder of a production engine with the spray cone angle changing during the injection period were simulated using the multi-dimensional KIVA-3V CFD code with detailed chemistry. Variation of the starting and ending spray angles, injection timing, initial cylinder pressure and temperature, swirl intensity, and compression ratio were explored. As a simplified case of VGS, two-pulse, hollow-cone sprays were also simulated.
Technical Paper

Application of Micro-Genetic Algorithms for the Optimization of Injection Strategies in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0219
In this paper, optimized single and double injection schemes were found using multi-dimensional engine simulation software (KIVA-3V) and a micro-genetic algorithm for a heavy duty diesel engine. The engine operating condition considered was at 1737 rev/min and 57 % load. The engine simulation code was validated using an engine equipped with a hydraulic-electronically controlled unit injector (HEUI) system. Five important parameters were used for the optimization - boost pressure, EGR rate, start-of-injection timing, fraction of fuel in the first pulse and dwell angle between first and second pulses. The optimum results for the single injection scheme showed significant improvements for the soot and NOx emissions. The start of injection timing was found to be very early, which suggests HCCI-like combustion. Optimized soot and NOx emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively, for the single injection scheme.
Technical Paper

Cycle Simulation Diesel HCCI Modeling Studies and Control

2004-10-25
2004-01-2997
An integrated system based modeling approach has been developed to understand early Direct Injection (DI) Diesel Homogeneous Charge Compression Ignition (HCCI) process. GT-Power, a commercial one-dimensional (1-D) engine cycle code has been coupled with an external cylinder model which incorporates sub-models for fuel injection, vaporization, detailed chemistry calculations (Chemkin), heat transfer, energy conservation and species conservation. In order to improve the modeling accuracy, a multi-zone model has been implemented to account for temperature and fuel stratifications in the cylinder charge. The predictions from the coupled simulation have been compared with experimental data from a single cylinder Caterpillar truck engine modified for Diesel HCCI operation. A parametric study is conducted to examine the effect of combustion timing on four major control parameters. Overall the results show good agreement of the trends between the experiments and model predictions.
Technical Paper

Residual Gas Measurements in a Utility Engine

2004-09-27
2004-32-0029
The residual gas fraction was measured in an air-cooled single-cylinder utility engine by directly sampling the trapped cylinder charge during a programmed misfire. Tests were performed for a range of fuel mixture preparation systems, cam timings, ignition timings, engine speeds and engine loads. The residual fraction was found to be relatively insensitive to the fuel mixture preparation system, but was, to a moderate degree, sensitive to the ignition timing. The residual fraction was found to be strongly affected by the amount of valve overlap and engine speed. The effects of engine speed and ignition timing were, in part, due to the in-cylinder conditions at EVO, with lower temperatures favoring higher residual fractions. The data were compared to existing literature models, all of which were found to be lacking.
Technical Paper

Modeling and Experiments of Dual-Fuel Engine Combustion and Emissions

2004-03-08
2004-01-0092
The combustion and emissions of a diesel/natural gas dual-fuel engine are studied. Available engine experimental data demonstrates that the dual-fuel configuration provides a potential alternative to diesel engine operation for reducing emissions. The experiments are compared to multi-dimensional model results. The computer code used is based on the KIVA-3V code and consists of updated sub-models to simulate more accurately the fuel spray atomization, auto-ignition, combustion and emissions processes. The model results show that dual-fuel engine combustion and emissions are well predicted by the present multi-dimensional model. Significant reduction in NOx emissions is observed in both the experiments and simulations when natural gas is substituted for diesel fuel. The HC emissions are under predicted by numerical model as the natural gas substitution is increased.
X