Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

Electric vehicle battery health aware DC fast-charging recommendation system

2024-04-09
2024-01-2604
DC fast charging (DCFC) also referred to as L3 charging, is the fastest charging technology to replenish the drivable range of an electric vehicle. DCFC provides the convenience of faster charging time compared to L1 and L2 at the expense of potentially increased battery health degradation. It is known to accelerate battery capacity fade leading to reduced range and lifetime of the EV battery. While there are active efforts and several means to reduce the downsides of DCFC at cell chemistry level, this trade-off is still an important consideration for most battery cells in automotive propulsion applications. Since DCFC is a customer driven technology, informing drivers of the trade-off of each DCFC event can potentially result in better outcomes for the EV battery life. Traditionally, the driver is advised to limit DCFC events without providing quantifiable metrics to inform their decisions during EV charging.
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

Sound Transmission Loss through Front of Dash and Instrumental Panel

2024-04-09
2024-01-2349
The subsystem of front of dash (FOD) and instrument panel (IP) is a critical path to isolate the powertrain noise and road noise for vehicles. This subsystem mainly consists of sheet metal, dash mats, IP, and the components inside IP such as HVAC and wiring harness. To achieve certain level of cabin quietness, the sound transmission loss performance of this subsystem is usually used as a quantifier. In this paper, the sound transmission loss through the FOD and IP is investigated up to 10kHz, through both acoustic testing and numerical simulation. In the acoustic testing, the subsystem is cut from a vehicle and installed on the wall of two-rooms STL testing suite, with source room being reverberant and receiver room being anechoic. In the testing, various scenarios are measured to understand the contributions from different components.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

Durability of Elastomeric Bushings Computed from Track-Recorded Multi-Channel Road Load Input

2024-04-09
2024-01-2253
The qualification requirements of automakers derive from track testing in which road load and moment inputs to a part in x, y and z directions are recorded over a set of driving conditions selected to represent typical operation. Because recorded histories are lengthy, often comprising many millions of time steps, past industry practice has been to specify simplified block cycle schedules for purposes of durability testing or analysis. Simplification, however, depends on imprecise human judgement, and risks fidelity of the inferred life and failure mode relative to actual. Fortunately, virtual methods for fatigue life prediction are available that are capable of processing full, real-time, multiaxial road load histories. Two examples of filled natural rubber ride bushings are considered here to demonstrate. Each bushing is subject to a schedule of 11 distinct recorded track events.
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Journal Article

Analysis and Validation of Current Ripple Induced PWM Switching Noise and Vibration for Electric Vehicles

2023-05-08
2023-01-1100
Pulse Width Modulation or PWM has been widely used in traction motor control for electric propulsion systems. The associated switching noise has become one of the major NVH concerns of electric vehicles (EVs). This paper presents a multi-disciplinary study to analyze and validate current ripple induced switching noise for EV applications. First, the root cause of the switching noise is identified as high frequency ripple components superimposed on the sinusoidal three-phase current waveforms, due to PWM switching. Measured phase currents correlate well with predictions based on an analytical method. Next, the realistic ripple currents are utilized to predict the electro-magnetic dynamic forces at both the motor pole pass orders and the switching frequency plus its harmonics. Special care is taken to ensure sufficient time step resolution to capture the ripple forces at varying motor speeds.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

Cylindrical Li-Ion Cell Crush CAE Capability in Automotive Application

2023-04-11
2023-01-0509
The world is moving towards E-mobility solutions and Battery Electric Vehicles (BEVs) are the main enabler towards it. Li-ion cells are the fundamental building block of any BEVs. There are three common types of Li-ion cell design i.e., cylindrical cells, Prismatic Cells and Pouch cells. Ensuring safety of BEVs are critical to gain customer trust and acceptance over Internal Combustion Engine (ICE) vehicles. EV fire is found to be one of the major concerns related to using higher energy batteries. During a crash event, Post-Crash Electrical Integrity of the BEV is to be ensured and hence primary focus is on mitigation of Li-ion cell internal short circuit. It has been seen in prior published articles that cell internal short circuit can be triggered by physical intrusion of cell. This paper primarily focusses on simulating the mechanical behavior of cylindrical cell under various crush conditions.
Technical Paper

Characterization and Modeling of Instrument Panel Textile Trim Materials for Passenger Airbag Deployment Analysis

2023-04-11
2023-01-0930
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment.
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
Technical Paper

Thermomechanical Fatigue Crack Growth Simulation in a Turbo-Housing Model Using Nonlinear Fracture Mechanics

2023-04-11
2023-01-0596
Turbocharger housings in internal combustion engines are subjected to severe mechanical and thermal cyclic loads throughout their life-time or during engine testing. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermo-mechanical fatigue (TMF) of the material. For the computational TMF life assessment of high temperature components, the DTMF model can provide reliable TMF life predictions. The model is based on a short fatigue crack growth law and uses local finite-element (FE) results to predict the number of cycles to failure for a technical crack. In engine applications, it is nowadays often acceptable to have short cracks as long as they do not propagate and cause loss of function of the component. Thus, it is necessary to predict not only potential crack locations and the corresponding number of cycles for a technical crack, but also to determine subsequent crack growth or even a possible crack arrest.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
X